Algorithms

Huffman Code

- Data Compression
- Lossy and Lossless Compression
- Adaptive and non-Adaptive Compression
- Fixed and Variable length Codes

■ Prefix Free Codes

- Binary Tree Representation
- Goodness Measure
- Generic Greedy Algorithm

■ Huffman Code
■ Optimality and Implementation

Imdad ullah Khan

Data Compression

Data Compression is used in many computer science areas for reduced
■ Computational complexity of data processing

- Storage complexity
- Communication complexity

Compression Scheme

Let \mathcal{D} be the set of all possible documents (files/input) and \mathcal{D}^{\prime} is set of all possible output documents

A compression scheme has two algorithms

- A compression algorithm $f: \mathcal{D} \rightarrow \mathcal{D}^{\prime}, \quad f(x)=y$

■ A decompression algorithm $g: \mathcal{D}^{\prime} \rightarrow \mathcal{D}, \quad g(y)=x^{\prime}$

Lossy and Lossless compression

A compression scheme is

- Lossless if $g(y)=f^{-1}(y)=x$ for all $x \in \mathcal{D}$ such that $f(x)=y$

■ Used in Huffman code, .gif, .png

■ Lossy if $g(y) \sim x$ for all $x \in \mathcal{D}$ such that $f(x)=y$

- Similarity between $g(y)$ and x is measured by some error function

■ Used in .mp3, .mpg, .jpg

Data Compression

source: percona.com data

Lossless Compression Huffman
Shannon Fano
Lossy Compression JPEG MPEG

\simeq original data

Adaptive and non-adaptive

A Compression scheme can be

- Non-adaptive: - Assumes prior knowledge of the data
- e.g. ' e ' is the most common character in English language documents
- 'the' is the most common word
- Adaptive: - Assumes no prior knowledge of the data
- can build such knowledge (e.g. frequencies in the input document)
- this knowledge will be adaptive to the actual document

Binary codes

A binary code is a compression scheme with \mathcal{D}^{\prime} as bit-strings

Suppose a file D is 100,000 characters long
D has only 6 unique characters (symbols)
Frequencies of each character is as follows

Characters and their frequencies in F

	a	b	c	d	e	f	Total
Frequency in 000's	45	13	12	16	9	5	100

Find a binary code that encodes D using minimum number of bits

Fixed versus Variable length codes

Fixed Length Code

- Fixed number of bits for each symbol (character)

■ e.g. ASCII (7 bits) and Unicode (UTF-8, UTF-16)

- ASCII can represent $2^{7}=128$ symbols

Variable Length Code

- Variable number of bits for each symbol

■ Can use fewer bits for more frequent symbols

- e.g. Huffman code

■ Difficult to find, needs compression scheme

Fixed versus Variable length codes

Characters	a	b	c	d	e	f		Total
Frequency	45k	13k	12k	16k	9 k	5 k		100k
Fixed-Length Code	000	001	010	011	100	101		100k
Variable Length Code	0	101	100	111	1101	1100		224 k

Variable length code uses about 25% less space

Fixed versus Variable length codes

Characters	a	b	c	d
Frequency	$\|\mid$	5	3	1
Fixed-Length Code	$\|\mid$	00	01	10
Variable Length Code	0	0	10	110

Let the string be a abbaabl $\mathbf{c} \mathbf{d}$

- Encoding under the fixed length code and it's length is $00000101000000011011 \rightarrow 2 \times 10=20$ bits

■ Encoding under the variable length code and it's length is $00101000010110111 \rightarrow 1 \cdot 5+2 \cdot 3+3 \cdot 1+3 \cdot 1=17$ bits

