
Algorithms

Greedy Interval Coloring

Interval Coloring - Degree, Depth, Lower Bound

Greedy Interval Coloring

Interval Coloring with Unknown Depth

Imdad ullah Khan

Imdad ullah Khan (LUMS) Interval Coloring 1 / 16

Interval Coloring: Introduction

You have a single multiple mono-task resources

▷ e.g. lecture rooms or a research equipment

and multiple requests to use a resource

Each request specifies a start time and finish time

Problem is to schedule (accept/reject) the requests

Problem is to map requests to resources

All requests mapped to one resource must be compatible

The goal is to accept the maximum number of requests

The goal is to use minimum number of resources

Each resource or part is referred to as a color

Also called interval partitioning

Imdad ullah Khan (LUMS) Interval Coloring 2 / 16

Interval Coloring: Problem Formulation

R = {r1, r2, . . . , rn} (set of requests)

Starting and finishing time of ri : s(i) and f (i)

for 1 ≤ i ≤ n s(i) < f (i)

Duration of request ri is di is f (i) - s(i)

ri

s(i) f(i)

ri and rj are compatible if they do not overlap in time

Otherwise ri and rj are conflicting

s(i) < f (i) < s(j) < f (j)︸ ︷︷ ︸
ri is to the left of rj

or s(j) < f (j) < s(i) < f (i)︸ ︷︷ ︸
ri is to the right of rj

A set is compatible if all pairs in it are compatible

Imdad ullah Khan (LUMS) Interval Coloring 3 / 16

Interval Coloring: Problem Formulation

Input: A set R of requests

Output: A partition of R with smallest number of compatible subsets

r1 r4 r5

r6r2

r8r3

r7

r1 r4 r8r7

r6r2

r5r3

Imdad ullah Khan (LUMS) Interval Coloring 4 / 16

Interval Coloring: Problem Formulation

Input: A set R of requests

Output: A partition of R with smallest number of compatible subsets

r1 r4 r5

r6r2

r8r3

r7

r6r2

r1 r4 r5

r8r7r3

Imdad ullah Khan (LUMS) Interval Coloring 5 / 16

Interval Coloring: Lower Bound

Degree of an interval is the number of other intervals conflicting with it

Depth of a set of intervals is the largest number of intervals passing
through a point in time

deg(r1) = 3

deg(r2) = 2

deg(r3) = 5

deg(r4) = 2

deg(r5) = 3
depth(R) = 3

r2

r3

r5

r1

r4

r7

r6

r8

Intervals passing through the depth realizing point(s) are ‘parallel’

Number of resources (parts/colors) is at least the depth of R

D = depth(R) is a lower bound on the number of colors needed

Imdad ullah Khan (LUMS) Interval Coloring 6 / 16

Greedy Interval Coloring

We give an algorithm to color R with D colors

Let r1, r2, . . . , rn be intervals sorted by s(·)

Rp(rj) : set of intervals with s(i) ≤ s(j) that are conflicting with rj

▷ Rp(rj) is set of preceding intervals that conflict with rj

Rp(r1) = { }
Rp(r2) = {r1}
Rp(r3) = {r1, r2}
Rp(r4) = {r1, r3}
Rp(r5) = {r3}

r2

r3

r5

r1

r4

r7

r6

r8

Imdad ullah Khan (LUMS) Interval Coloring 7 / 16

Greedy Interval Coloring

Algorithm : Interval Coloring Algorithm (R,D)

C ← {c1, . . . , cD} ▷ set of D colors to assign

Let r1, r2, . . . , rn be R sorted by s(·)
for j = 1 to n do

C ′ ← C \ {colors used for any ri ∈ Rp(rj)}
if C ′ ̸= ∅ then

color rj with a cl ∈ C ′

else
Leave rj uncolored

Imdad ullah Khan (LUMS) Interval Coloring 8 / 16

Greedy Interval Coloring: Correctness

Algorithm : Interval Coloring Algorithm (R,D)

C ← {c1, . . . , cD} ▷ set of D colors to assign

Let r1, r2, . . . , rn be R sorted by s(.)

for j = 1 to n do

C ′ ← C \ {colors used for any ri ∈ Rp(rj)}
if C ′ ̸= ∅ then

color rj with a cl ∈ C ′

else
Leave rj uncolored

Every request in R gets a non-conflicting color if any

Let ra and rb be conflicting requests with s(ra) < s(rb)

while coloring rb color of ra was excluded by construction

Imdad ullah Khan (LUMS) Interval Coloring 9 / 16

Greedy Interval Coloring: Correctness

Algorithm : Interval Coloring Algorithm (R,D)

C ← {c1, . . . , cD} ▷ set of D colors to assign

Let r1, r2, . . . , rn be R sorted by s(.)

for j = 1 to n do
C ′ ← C \ {colors used for any ri ∈ Rp(rj)}
if C ′ ̸= ∅ then

color rj with a cl ∈ C ′

else
Leave rj uncolored

Every request in R does get a color

Suppose rb did not get a color: for rb, C
′ = ∅ ▷ |Rp(rb)| ≥ D

For every rj ∈ Rp(rb), s(rj) < s(rb) < f (rj) ▷ (conflict definition)

At point s(rb), all requests in {rb} ∪ Rp(rb) are active

Hence depth would be greater than D ▷ a contradiction!

Imdad ullah Khan (LUMS) Interval Coloring 10 / 16

Greedy Interval Coloring: Optimality

Lower bound: Any algorithm must use at least D colors

Upper bound: This algorithm uses at most D colors

Imdad ullah Khan (LUMS) Interval Coloring 11 / 16

Greedy Interval Coloring: Implementation

Algorithm : Interval Coloring Algorithm (R,D)

C ← {c1, . . . , cD}
Let r1, r2, . . . , rn be R sorted by s(.)
for j = 1 to n do

C ′ ← C \ {colors used for any ri ∈ Rp(rj)}
color rj with a cl ∈ C ′

Naive implementation 1 : Pre-compute Rp(rj) for every j

Takes O(n2) in precomputation

Large space complexity

Imdad ullah Khan (LUMS) Interval Coloring 12 / 16

Greedy Interval Coloring: Implementation

Algorithm : Interval Coloring Algorithm (R,D)

C ← {c1, . . . , cD}
Let r1, r2, . . . , rn be R sorted by s(·)
for j = 1 to n do

C ′ ← C \ {colors used for any ri ∈ Rp(rj)}
color rj with a cl ∈ C ′

Naive implementation 2 : Find Rp(rj) on the go

No need to maintain or get the set

Just need to find an unused color

runtime: O(n2)

Imdad ullah Khan (LUMS) Interval Coloring 13 / 16

Greedy Interval Coloring: Implementation

Algorithm : Interval Coloring Algorithm (R,D)

C ← {c1, . . . , cD}
Let r1, r2, . . . , rn be R sorted by s(·)
for j = 1 to n do

C ′ ← C \ {colors used for any ri ∈ Rp(rj)}
color rj with a cl ∈ C ′

Efficient implementation: Sort the 2d-array R by s(·)

Searching for Rp(rj) needs a scan of R, leading to O(n2) runtime

We only need to find an “available” color

Maintain information of the last interval colored by each color

Easy to update this information when rj is colored with cl

An available color is the one whose last usage is not conflicting

Total runtime: O(nD), which could be O(n2)

Imdad ullah Khan (LUMS) Interval Coloring 14 / 16

Greedy Interval Coloring: Implementation

Algorithm : Interval Coloring Algorithm (R,D)

C ← {c1, . . . , cD}
Let r1, r2, . . . , rn be R sorted by s(·)
for j = 1 to n do

C ′ ← C \ {colors used for any ri ∈ Rp(rj)}
color rj with a cl ∈ C ′

Efficient implementation: Sort the 2d-array R by s(·)

Maintain information of the last interval colored by each color

Maintain this information in a min-heap H
items are colors and values are f (·) of last request using this color

For rj , c ← ExtractMin(H)
IncreaseKey(H, c , f (rj))
Runtime O(n log n + n logD)

Imdad ullah Khan (LUMS) Interval Coloring 15 / 16

Interval Coloring: Unknown Depth

Algorithm : Interval Coloring Unknown Depth (R)
d ← 1
Let r1, r2, . . . , rn be R sorted by s(·)
for j = 1 to n do
if rj can be colored by some color c ≤ d then
Color ri with color c

else
Allocate a new color d + 1
d ← d + 1
Color ri with color d

return d

Colored are named by numbers

Allocates colors on need basis

Prove that exactly D colors are allocated

Proof of correctness is very similar to the known D case

Imdad ullah Khan (LUMS) Interval Coloring 16 / 16

