Algorithms

Greedy Interval Coloring

■ Interval Coloring - Degree, Depth, Lower Bound

- Greedy Interval Coloring

■ Interval Coloring with Unknown Depth

Imdad ullah Khan

Interval Coloring: Introduction

- You have a single multiple mono-task resources
\triangleright e.g. lecture rooms or a research equipment
- and multiple requests to use a resource

Each request specifies a start time and finish time

- Problem is to schedule (accept/reject) the requests
- Problem is to map requests to resources
- All requests mapped to one resource must be compatible
- The goal is to accept the maximum number of requests
- The goal is to use minimum number of resources

Each resource or part is referred to as a color
Also called interval partitioning

Interval Coloring: Problem Formulation

■ $\mathcal{R}=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ (set of requests)

- Starting and finishing time of $r_{i}: s(i)$ and $f(i)$

$$
\text { for } 1 \leq i \leq n \quad s(i)<f(i)
$$

■ Duration of request r_{i} is d_{i} is $f(i)-s(i)$

r_{i} and r_{j} are compatible if they do not overlap in time

Otherwise r_{i} and r_{j} are conflicting

$$
\underbrace{s(i)<f(i)<s(j)<f(j)}_{r_{i} \text { is to the left of } r_{j}} \quad \text { OR } \quad \underbrace{s(j)<f(j)<s(i)<f(i)}_{r_{i} \text { is to the right of } r_{j}}
$$

A set is compatible if all pairs in it are compatible

Interval Coloring: Problem Formulation

Input: A set \mathcal{R} of requests
Output: A partition of \mathcal{R} with smallest number of compatible subsets

Interval Coloring: Problem Formulation

Input: A set \mathcal{R} of requests
Output: A partition of \mathcal{R} with smallest number of compatible subsets

Interval Coloring: Lower Bound

Degree of an interval is the number of other intervals conflicting with it

Depth of a set of intervals is the largest number of intervals passing through a point in time

- Intervals passing through the depth realizing point(s) are 'parallel'

■ Number of resources (parts/colors) is at least the depth of \mathcal{R} $D=\operatorname{depth}(\mathcal{R})$ is a lower bound on the number of colors needed

Greedy Interval Coloring

We give an algorithm to color \mathcal{R} with D colors

- Let $r_{1}, r_{2}, \ldots, r_{n}$ be intervals sorted by $s(\cdot)$
- $\mathcal{R}_{p}\left(r_{j}\right)$: set of intervals with $s(i) \leq s(j)$ that are conflicting with r_{j}
$\triangleright \mathcal{R}_{p}\left(r_{j}\right)$ is set of preceding intervals that conflict with r_{j}

Greedy Interval Coloring

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)

$C \leftarrow\left\{c_{1}, \ldots, c_{D}\right\}$
\triangleright set of D colors to assign
Let $r_{1}, r_{2}, \ldots, r_{n}$ be \mathcal{R} sorted by $s(\cdot)$
for $j=1$ to n do
$C^{\prime} \leftarrow C \backslash\left\{\right.$ colors used for any $\left.r_{i} \in \mathcal{R}_{p}\left(r_{j}\right)\right\}$
if $C^{\prime} \neq \emptyset$ then
color r_{j} with a $c_{l} \in C^{\prime}$
else
Leave r_{j} uncolored

Greedy Interval Coloring: Correctness

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)

```
\(C \leftarrow\left\{c_{1}, \ldots, c_{D}\right\}\)
\(\triangleright\) set of \(D\) colors to assign
Let \(r_{1}, r_{2}, \ldots, r_{n}\) be \(\mathcal{R}\) sorted by \(s(\).
for \(j=1\) to \(n\) do
    \(C^{\prime} \leftarrow C \backslash\left\{\right.\) colors used for any \(\left.r_{i} \in \mathcal{R}_{p}\left(r_{j}\right)\right\}\)
    if \(C^{\prime} \neq \emptyset\) then
        color \(r_{j}\) with a \(c_{l} \in C^{\prime}\)
        else
            Leave \(r_{j}\) uncolored
```

Every request in \mathcal{R} gets a non-conflicting color if any

- Let r_{a} and r_{b} be conflicting requests with $s\left(r_{a}\right)<s\left(r_{b}\right)$

■ while coloring r_{b} color of r_{a} was excluded by construction

Greedy Interval Coloring: Correctness

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)
$C \leftarrow\left\{c_{1}, \ldots, c_{D}\right\} \quad \triangleright$ set of D colors to assign
Let $r_{1}, r_{2}, \ldots, r_{n}$ be \mathcal{R} sorted by $s($.
for $j=1$ to n do
$C^{\prime} \leftarrow C \backslash\left\{\right.$ colors used for any $\left.r_{i} \in \mathcal{R}_{p}\left(r_{j}\right)\right\}$
if $C^{\prime} \neq \emptyset$ then color r_{j} with a $c_{l} \in C^{\prime}$
else
Leave r_{j} uncolored

Every request in \mathcal{R} does get a color

■ Suppose r_{b} did not get a color: for $r_{b}, C^{\prime}=\emptyset$
$\triangleright\left|\mathcal{R}_{p}\left(r_{b}\right)\right| \geq D$
■ For every $r_{j} \in \mathcal{R}_{p}\left(r_{b}\right), s\left(r_{j}\right)<s\left(r_{b}\right)<f\left(r_{j}\right) \quad \triangleright$ (conflict definition)

- At point $s\left(r_{b}\right)$, all requests in $\left\{r_{b}\right\} \cup \mathcal{R}_{p}\left(r_{b}\right)$ are active
- Hence depth would be greater than D
\triangleright a contradiction!

Greedy Interval Coloring: Optimality

Lower bound:
Any algorithm must use at least D colors

Upper bound:
This algorithm uses at most D colors

Greedy Interval Coloring: Implementation

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)
$C \leftarrow\left\{c_{1}, \ldots, c_{D}\right\}$
Let $r_{1}, r_{2}, \ldots, r_{n}$ be \mathcal{R} sorted by $s($.
for $j=1$ to n do
$C^{\prime} \leftarrow C \backslash\left\{\right.$ colors used for any $\left.r_{i} \in \mathcal{R}_{p}\left(r_{j}\right)\right\}$ color r_{j} with a $c_{l} \in C^{\prime}$

Naive implementation 1 : Pre-compute $\mathcal{R}_{p}\left(r_{j}\right)$ for every j

- Takes $O\left(n^{2}\right)$ in precomputation
- Large space complexity

Greedy Interval Coloring: Implementation

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)
$C \leftarrow\left\{c_{1}, \ldots, c_{D}\right\}$
Let $r_{1}, r_{2}, \ldots, r_{n}$ be \mathcal{R} sorted by $s(\cdot)$
for $j=1$ to n do
$C^{\prime} \leftarrow C \backslash\left\{\right.$ colors used for any $\left.r_{i} \in \mathcal{R}_{p}\left(r_{j}\right)\right\}$ color r_{j} with a $c_{l} \in C^{\prime}$

Naive implementation 2: Find $\mathcal{R}_{p}\left(r_{j}\right)$ on the go

- No need to maintain or get the set
- Just need to find an unused color
- runtime: $O\left(n^{2}\right)$

Greedy Interval Coloring: Implementation

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)
$C \leftarrow\left\{c_{1}, \ldots, c_{D}\right\}$
Let $r_{1}, r_{2}, \ldots, r_{n}$ be \mathcal{R} sorted by $s(\cdot)$
for $j=1$ to n do
$C^{\prime} \leftarrow C \backslash\left\{\right.$ colors used for any $\left.r_{i} \in \mathcal{R}_{p}\left(r_{j}\right)\right\}$ color r_{j} with a $c_{l} \in C^{\prime}$

Efficient implementation: Sort the $2 d$-array \mathcal{R} by $s(\cdot)$

- Searching for $\mathcal{R}_{p}\left(r_{j}\right)$ needs a scan of \mathcal{R}, leading to $O\left(n^{2}\right)$ runtime
- We only need to find an "available" color
- Maintain information of the last interval colored by each color
- Easy to update this information when r_{j} is colored with c_{l}
- An available color is the one whose last usage is not conflicting
- Total runtime: $O(n D)$, which could be $O\left(n^{2}\right)$

Greedy Interval Coloring: Implementation

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)
$C \leftarrow\left\{c_{1}, \ldots, c_{D}\right\}$
Let $r_{1}, r_{2}, \ldots, r_{n}$ be \mathcal{R} sorted by $s(\cdot)$
for $j=1$ to n do
$C^{\prime} \leftarrow C \backslash\left\{\right.$ colors used for any $\left.r_{i} \in \mathcal{R}_{p}\left(r_{j}\right)\right\}$ color r_{j} with a $c_{l} \in C^{\prime}$

Efficient implementation: Sort the $2 d$-array \mathcal{R} by $s(\cdot)$

- Maintain information of the last interval colored by each color
- Maintain this information in a min-heap \mathcal{H}

■ items are colors and values are $f(\cdot)$ of last request using this color

- For $r_{j}, c \leftarrow \operatorname{ExtractMin}(\mathcal{H})$
- IncreaseKey $\left(\mathcal{H}, c, f\left(r_{j}\right)\right)$
- Runtime $O(n \log n+n \log D)$

Interval Coloring: Unknown Depth

Algorithm : Interval Coloring Unknown Depth (\mathcal{R})
$d \leftarrow 1$
Let $r_{1}, r_{2}, \ldots, r_{n}$ be \mathcal{R} sorted by $s(\cdot)$
for $j=1$ to n do
if r_{j} can be colored by some color $c \leq d$ then
Color r_{i} with color c
else
Allocate a new color $d+1$
$d \leftarrow d+1$
Color r_{i} with color d
return d

- Colored are named by numbers
- Allocates colors on need basis
- Prove that exactly D colors are allocated
- Proof of correctness is very similar to the known D case

