Greedy Interval Coloring

- Interval Coloring Degree, Depth, Lower Bound
- Greedy Interval Coloring
- Interval Coloring with Unknown Depth

Imdad ullah Khan

Interval Coloring: Introduction

■ You have a single multiple mono-task resources

 \triangleright e.g. lecture rooms or a research equipment

and multiple requests to use a resource

Each request specifies a start time and finish time

- Problem is to schedule (accept/reject) the requests
- Problem is to map requests to resources
- All requests mapped to one resource must be compatible
- The goal is to accept the maximum number of requests
- The goal is to use minimum number of resources

Each resource or part is referred to as a color

Also called interval partitioning

Interval Coloring: Problem Formulation

• $\mathcal{R} = \{r_1, r_2, \dots, r_n\}$ (set of requests)

Starting and finishing time of r_i: s(i) and f(i)
 for 1 ≤ i ≤ n s(i) < f(i)

Duration of request r_i is d_i is f(i) - s(i)

 r_i and r_i are **compatible** if they do not overlap in time

Otherwise r_i and r_j are conflicting

$$\underbrace{s(i) < f(i)}_{r_i \text{ is to the left of } r_j} \qquad \text{OR} \qquad \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} \qquad \text{OR}$$

A set is compatible if all pairs in it are compatible

Interval Coloring: Problem Formulation

Input: A set \mathcal{R} of requests

Output: A partition of \mathcal{R} with smallest number of compatible subsets

Interval Coloring: Problem Formulation

Input: A set \mathcal{R} of requests

Output: A partition of \mathcal{R} with smallest number of compatible subsets

Interval Coloring: Lower Bound

Degree of an interval is the number of other intervals conflicting with it

Depth of a set of intervals is the largest number of intervals passing through a point in time

- Intervals passing through the depth realizing point(s) are 'parallel'
- Number of resources (parts/colors) is at least the depth of *R*

 $D = depth(\mathcal{R})$ is a lower bound on the number of colors needed

Greedy Interval Coloring

We give an algorithm to color $\mathcal R$ with D colors

- Let r_1, r_2, \ldots, r_n be intervals sorted by $s(\cdot)$
- *R_p(r_j)*: set of intervals with s(i) ≤ s(j) that are conflicting with r_j
 R_p(r_j) is set of preceding intervals that conflict with r_j

Greedy Interval Coloring

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)

 $C \leftarrow \{c_1, \dots, c_D\} \qquad \qquad \triangleright \text{ set of } D \text{ colors to assign}$ Let r_1, r_2, \dots, r_n be \mathcal{R} sorted by $s(\cdot)$ **for** j = 1 to n **do** $C' \leftarrow C \setminus \{\text{colors used for any } r_i \in \mathcal{R}_p(r_j)\}$ **if** $C' \neq \emptyset$ **then** color r_j with a $c_l \in C'$ **else** Leave r_i uncolored

Greedy Interval Coloring: Correctness

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)

```
C \leftarrow \{c_1, \dots, c_D\}
Let r_1, r_2, \dots, r_n be \mathcal{R} sorted by s(.)
for j = 1 to n do
C' \leftarrow C \setminus \{\text{colors used for any } r_i \in \mathcal{R}_p(r_j)\}
if C' \neq \emptyset then
color r_j with a c_l \in C'
else
Leave r_i uncolored
```

Every request in ${\mathcal R}$ gets a non-conflicting color if any

• Let r_a and r_b be conflicting requests with $s(r_a) < s(r_b)$

• while coloring r_b color of r_a was excluded by construction

 \triangleright set of D colors to assign

Greedy Interval Coloring: Correctness

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)

```
C \leftarrow \{c_1, \dots, c_D\}
Let r_1, r_2, \dots, r_n be \mathcal{R} sorted by s(.)
for j = 1 to n do
C' \leftarrow C \setminus \{\text{colors used for any } r_i \in \mathcal{R}_p(r_j)\}
if C' \neq \emptyset then
color r_j with a c_l \in C'
else
Leave r_j uncolored
```

 \triangleright set of *D* colors to assign

Every request in ${\mathcal R}$ does get a color

Suppose r_b did not get a color: for r_b , $C' = \emptyset$ \triangleright $|\mathcal{R}_p(r_b)| \ge D$

- For every $r_j \in \mathcal{R}_p(r_b)$, $s(r_j) < s(r_b) < f(r_j)$ \triangleright (conflict definition)
- At point $s(r_b)$, all requests in $\{r_b\} \cup \mathcal{R}_p(r_b)$ are active
- Hence depth would be greater than D

IMDAD ULLAH KHAN (LUMS)

▷ a contradiction!

Greedy Interval Coloring: Optimality

Lower bound:	Any algorithm must use at least D colors	
Upper bound:	This algorithm uses at most D colors	

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)

$$C \leftarrow \{c_1, \dots, c_D\}$$

Let r_1, r_2, \dots, r_n be \mathcal{R} sorted by $s(.)$
for $j = 1$ to n do
 $C' \leftarrow C \setminus \{\text{colors used for any } r_i \in \mathcal{R}_p(r_j)\}$
color r_j with a $c_l \in C'$

Naive implementation 1 : Pre-compute $\mathcal{R}_{p}(r_{j})$ for every j

- Takes $O(n^2)$ in precomputation
- Large space complexity

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)

$$C \leftarrow \{c_1, \dots, c_D\}$$

Let r_1, r_2, \dots, r_n be \mathcal{R} sorted by $s(\cdot)$
for $j = 1$ to n do
 $C' \leftarrow C \setminus \{\text{colors used for any } r_i \in \mathcal{R}_p(r_j)\}$
color r_i with a $c_i \in C'$

Naive implementation 2 : Find $\mathcal{R}_p(r_j)$ on the go

- No need to maintain or get the set
- Just need to find an unused color
- runtime: $O(n^2)$

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)

$$C \leftarrow \{c_1, \dots, c_D\}$$

Let r_1, r_2, \dots, r_n be \mathcal{R} sorted by $s(\cdot)$
for $j = 1$ to n do
 $C' \leftarrow C \setminus \{\text{colors used for any } r_i \in \mathcal{R}_p(r_j)\}$
color r_j with a $c_l \in C'$

Efficient implementation: Sort the 2*d*-array \mathcal{R} by $s(\cdot)$

- Searching for $\mathcal{R}_p(r_j)$ needs a scan of \mathcal{R} , leading to $O(n^2)$ runtime
- We only need to find an "available" color
- Maintain information of the last interval colored by each color
- Easy to update this information when r_j is colored with c_l
- An available color is the one whose last usage is not conflicting
- Total runtime: O(nD), which could be $O(n^2)$

Algorithm : Interval Coloring Algorithm (\mathcal{R}, D)

$$C \leftarrow \{c_1, \dots, c_D\}$$

Let r_1, r_2, \dots, r_n be \mathcal{R} sorted by $s(\cdot)$
for $j = 1$ to n do
 $C' \leftarrow C \setminus \{\text{colors used for any } r_i \in \mathcal{R}_p(r_j)\}$
color r_j with a $c_l \in C'$

Efficient implementation: Sort the 2*d*-array \mathcal{R} by $s(\cdot)$

- Maintain information of the last interval colored by each color
- Maintain this information in a min-heap $\mathcal H$
- items are colors and values are $f(\cdot)$ of last request using this color
- For r_j , $c \leftarrow \text{ExtractMin}(\mathcal{H})$
- INCREASEKEY($\mathcal{H}, c, f(r_j)$)
- Runtime $O(n \log n + n \log D)$

Interval Coloring: Unknown Depth

Algorithm : Interval Coloring Unknown Depth (\mathcal{R})

```
d \leftarrow 1
Let r_1, r_2, \dots, r_n be \mathcal{R} sorted by s(\cdot)
for j = 1 to n do
if r_j can be colored by some color c \le d then
Color r_i with color c
else
Allocate a new color d + 1
d \leftarrow d + 1
Color r_i with color d
return d
```

- Colored are named by numbers
- Allocates colors on need basis
- Prove that exactly D colors are allocated
- Proof of correctness is very similar to the known D case