Algorithms

Greedy Interval Scheduling

■ Interval Scheduling - Generic Greedy Algorithm
■ Sub-Optimal Greedy Algorithms

- Earliest Starting Request First
- Latest Finishing Request First
- Shortest Duration Request First
- Least Conflicting Request First

■ Earliest Finish Time First Algorithm

- Correctness and Optimality
- Implementation and Runtime

Imdad ullah Khan

Interval Scheduling: Problem

- $\mathcal{R}=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ (set of requests)
- Starting and finishing time of $r_{i}: s(i)$ and $f(i)$

$$
\text { for } 1 \leq i \leq n \quad s(i)<f(i)
$$

■ Duration of request r_{i} is d_{i} is $f(i)-s(i)$

r_{i} and r_{j} are compatible if they do not overlap in time

Otherwise r_{i} and r_{j} are conflicting

$$
\underbrace{s(i)<f(i)<s(j)<f(j)}_{r_{i} \text { is to the left of } r_{j}} \quad \text { OR } \underbrace{s(j)<f(j)<s(i)<f(i)}_{r_{i} \text { is to the right of } r_{j}}
$$

A set is compatible if all pairs in it are compatible

Interval Scheduling: Generic Greedy Algorithm

Input: A set \mathcal{R} of requests
Output: A largest compatible subset $S \subset \mathcal{R}$

Generic Greedy algorithm

Process requests in a fixed order and select compatible requests greedily

Algorithm Geedy Interval Scheduling Algorithm (\mathcal{R})

$$
A \leftarrow \emptyset
$$

while $\mathcal{R} \neq \emptyset$ do
select a request r_{x} from \mathcal{R}
remove from \mathcal{R} all those requests conflicting with r_{x}
$A \leftarrow A \cup\left\{r_{x}\right\}$
return A
By construction the algorithm is correct
$\triangleright(A$ is a compatible subset $)$

Interval Scheduling: Greedy Algorithm

■ Earliest Starting Request First

- Latest Finishing Request First
- Shortest Duration Request First
- Least Conflicting Request First
- Found a counter example to optimality of each of the above
- Earliest finishing request first
\triangleright Idea is to make resource free as soon as possible
- Optimal?
- Produced optimal solution on all above examples
- Need a proof of optimality

Earliest Finishing Time First: Algorithm

Algorithm : Interval Scheduling Algorithm (\mathcal{R})

$A \leftarrow \emptyset$
while $\mathcal{R} \neq \emptyset$ do
Select request r_{x} with smallest finishing time from \mathcal{R}
Remove from \mathcal{R} all requests conflicting with r_{x}
$A \leftarrow A \cup\left\{r_{x}\right\}$
return A

Correctness: $\quad A$ is a feasible solution

- A is a valid output
- $A \subset \mathcal{R}$ and A is compatible
- At every step the algorithm only added r_{i} that was compatible with all of A so far

Earliest Finishing Time First: Optimality

Optimality:

A is an optimal solution

Let \mathcal{O} be an optimal solution
We need to prove that $|A|=|O|$
Note that $A=O$ is not necessary

Both $\left\{r_{1}, r_{2}, r_{7}, r_{8}\right\}$ and $\left\{r_{6}, r_{2}, r_{7}, r_{8}\right\}$ are optimal solutions

Earliest Finishing Time First: Optimality

Optimality:
 A is an optimal solution

Let \mathcal{O} be an optimal solution
We need to prove that $|A|=|O|$
Note that $A=O$ is not necessary

Let $A=a_{1}, a_{2}, \ldots, a_{k}$
Let $O=p_{1}, p_{2}, \ldots, p_{m}$

Need to prove that $\quad|A|=k=m=|O|$

Earliest Finishing Time First: Optimality

Let $A=a_{1}, a_{2}, \ldots, a_{k} \quad O=p_{1}, p_{2}, \ldots, p_{m}$
Let A and O both be sorted by finishing time
Lemma: For $1 \leq i \leq k \quad f\left(a_{i}\right) \leq f\left(p_{i}\right)$
\triangleright Note the range $1 \leq i \leq k$ cannot be $1 \leq i \leq m$
Proof uses the intuition (earliest finishing time first)
Our algorithm stays ahead by releasing the resource as early as possible

Earliest Finishing Time First: Optimality

Let $A=a_{1}, a_{2}, \ldots, a_{k} \quad O=p_{1}, p_{2}, \ldots, p_{m}$
Let A and O both be sorted by finishing time
Lemma: \quad For $1 \leq i \leq k \quad f\left(a_{i}\right) \leq f\left(p_{i}\right)$

Proof by Induction on i
Basis Step: $f\left(a_{1}\right) \leq f\left(p_{1}\right)$ because $f\left(a_{1}\right) \leq f(*)$

Earliest Finishing Time First: Optimality

Let $A=a_{1}, a_{2}, \ldots, a_{k}$
$O=p_{1}, p_{2}, \ldots, p_{m}$

Let A and O both be sorted by finishing time
Lemma: \quad For $1 \leq i \leq k \quad f\left(a_{i}\right) \leq f\left(p_{i}\right)$

Inductive Step: If $f\left(a_{t}\right) \leq f\left(p_{t}\right)$, then $f\left(a_{t+1}\right) \leq f\left(p_{t+1}\right)$
$f\left(a_{t}\right) \leq f\left(p_{t}\right) \leq s\left(p_{t+1}\right) \quad \because p_{t+1}$ is compatible with p_{t}
p_{t+1} is compatible with a_{t}, so p_{t+1} is available for A
Algorithm must choose a_{t+1} with $f\left(a_{t+1}\right) \leq f\left(p_{t+1}\right)$

Earliest Finishing Time First: Optimality

Let $A=a_{1}, a_{2}, \ldots, a_{k}$
$O=p_{1}, p_{2}, \ldots, p_{m}$

Let A and O both be sorted by finishing time
Lemma: \quad For $1 \leq i \leq k \quad f\left(a_{i}\right) \leq f\left(p_{i}\right)$

Theorem: $k=m$

Suppose $m>k, \quad \exists p_{k+1} \in O, \quad p_{k+1} \notin A$
$f\left(a_{k}\right)<f\left(p_{k}\right) \leq s\left(p_{k+1}\right)$
p_{k+1} is compatible with all requests in A
p_{k+1} is available, $p_{k+1} \in \mathcal{R}$ after iteration k

Earliest Finishing Time First: Implementation

Algorithm : Interval Scheduling Algorithm (\mathcal{R})
$A \leftarrow \emptyset$
while $\mathcal{R} \neq \emptyset$ do
Select request r_{x} with smallest finishing time from \mathcal{R}
Remove from \mathcal{R} all requests conflicting with r_{x}
$A \leftarrow A \cup\left\{r_{x}\right\}$
return A

Naive implementation: Uses list or array

- $O(n)$ for finding earliest finishing time request r_{x}
- $O(n)$ for deleting requests conflicting with $r_{x} \triangleright$ check all remaining requests
- r_{i} is conflicting with r_{x} if $s\left(r_{i}\right) \leq f\left(r_{x}\right)$ (in this setting)
- Total runtime : $O\left(n^{2}\right)$

Earliest Finishing Time First: Implementation

Algorithm : Interval Scheduling Algorithm (\mathcal{R})
$A \leftarrow \emptyset$
while $\mathcal{R} \neq \emptyset$ do
Select request r_{x} with smallest finishing time from \mathcal{R}
Remove from \mathcal{R} all requests conflicting with r_{x}
$A \leftarrow A \cup\left\{r_{x}\right\}$
return A

Efficient implementation: Sort the $2 d$-array \mathcal{R} by $f(\cdot)$

- Maintain index of first "not-deleted" request in \mathcal{R}
- Add $\mathcal{R}[$ index] to A
- Delete all requests $\mathcal{R}[$ index $\ldots n]$ whose $s\left(r_{i}\right) \leq f\left(r_{\text {index }}\right)$
\triangleright Delete means move index to first index with $s\left(r_{i}\right)>f\left(r_{\text {index }}\right)$
- Total runtime: $O(n)$

Earliest Finishing Time First: Implementation

Algorithm : Interval Scheduling Algorithm (\mathcal{R})

$A \leftarrow \emptyset$
while $\mathcal{R} \neq \emptyset$ do
Select request r_{x} with smallest finishing time from \mathcal{R} Remove from \mathcal{R} all requests conflicting with r_{x}

$$
A \leftarrow A \cup\left\{r_{x}\right\}
$$

return A

