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Interval Scheduling: Problem

R = {r1, r2, . . . , rn} (set of requests)

Starting and finishing time of ri : s(i) and f (i)

for 1 ≤ i ≤ n s(i) < f (i)

Duration of request ri is di is f (i) - s(i)

ri

s(i) f(i)

ri and rj are compatible if they do not overlap in time

Otherwise ri and rj are conflicting

s(i) < f (i) < s(j) < f (j)︸ ︷︷ ︸
ri is to the left of rj

or s(j) < f (j) < s(i) < f (i)︸ ︷︷ ︸
ri is to the right of rj

A set is compatible if all pairs in it are compatible
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Interval Scheduling: Generic Greedy Algorithm

Input: A set R of requests

Output: A largest compatible subset S ⊂ R

Generic Greedy algorithm
Process requests in a fixed order and select compatible requests greedily

Algorithm Geedy Interval Scheduling Algorithm (R)

A← ∅
while R ≠ ∅ do
select a request rx from R
remove from R all those requests conflicting with rx
A← A ∪ {rx}

return A

By construction the algorithm is correct ▷ (A is a compatible subset)
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Interval Scheduling: Greedy Algorithm

Earliest Starting Request First

Latest Finishing Request First

Shortest Duration Request First

Least Conflicting Request First

Found a counter example to optimality of each of the above

Earliest finishing request first

▷ Idea is to make resource free as soon as possible

Optimal?

Produced optimal solution on all above examples

Need a proof of optimality
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Earliest Finishing Time First: Algorithm

Algorithm : Interval Scheduling Algorithm (R)

A← ∅
while R ≠ ∅ do

Select request rx with smallest finishing time from R
Remove from R all requests conflicting with rx
A← A ∪ {rx}

return A

Correctness: A is a feasible solution

A is a valid output

A ⊂ R and A is compatible

At every step the algorithm only added ri that was compatible with
all of A so far
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Earliest Finishing Time First: Optimality

Optimality: A is an optimal solution

Let O be an optimal solution

We need to prove that |A| = |O|

Note that A = O is not necessary

r1 r2

r5r4

r6 r7 r8

r3 r1 r2

r5r4
r6 r7 r8

r3

Both {r1, r2, r7, r8} and {r6, r2, r7, r8} are optimal solutions
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Earliest Finishing Time First: Optimality

Optimality: A is an optimal solution

Let O be an optimal solution

We need to prove that |A| = |O|

Note that A = O is not necessary

Let A = a1, a2, . . . , ak

Let O = p1, p2, . . . , pm

Need to prove that |A| = k = m = |O|
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Earliest Finishing Time First: Optimality

Let A = a1, a2, . . . , ak O = p1, p2, . . . , pm

Let A and O both be sorted by finishing time

Lemma: For 1 ≤ i ≤ k f (ai) ≤ f (pi)

▷ Note the range 1 ≤ i ≤ k cannot be 1 ≤ i ≤ m

Proof uses the intuition (earliest finishing time first)

Our algorithm stays ahead by releasing the resource as early as possible
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Earliest Finishing Time First: Optimality

Let A = a1, a2, . . . , ak O = p1, p2, . . . , pm

Let A and O both be sorted by finishing time

Lemma: For 1 ≤ i ≤ k f (ai) ≤ f (pi)

Proof by Induction on i

Basis Step: f (a1) ≤ f (p1) because f (a1) ≤ f (∗)
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Earliest Finishing Time First: Optimality

Let A = a1, a2, . . . , ak O = p1, p2, . . . , pm

Let A and O both be sorted by finishing time

Lemma: For 1 ≤ i ≤ k f (ai) ≤ f (pi)

Inductive Step: If f (at) ≤ f (pt), then f (at+1) ≤ f (pt+1)

f (at) ≤ f (pt) ≤ s(pt+1) ∵ pt+1 is compatible with pt

pt+1 is compatible with at , so pt+1 is available for A

Algorithm must choose at+1 with f (at+1) ≤ f (pt+1)

at

pt pt+1
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Earliest Finishing Time First: Optimality

Let A = a1, a2, . . . , ak O = p1, p2, . . . , pm

Let A and O both be sorted by finishing time

Lemma: For 1 ≤ i ≤ k f (ai) ≤ f (pi)

Theorem: k = m

Suppose m > k, ∃ pk+1 ∈ O, pk+1 /∈ A

f (ak) < f (pk) ≤ s(pk+1)

pk+1 is compatible with all requests in A

pk+1 is available, pk+1 ∈ R after iteration k
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Earliest Finishing Time First: Implementation

Algorithm : Interval Scheduling Algorithm (R)
A← ∅
while R ≠ ∅ do

Select request rx with smallest finishing time from R
Remove from R all requests conflicting with rx
A← A ∪ {rx}

return A

Naive implementation: Uses list or array

O(n) for finding earliest finishing time request rx ▷ findmin by f (·)
O(n) for deleting requests conflicting with rx ▷ check all remaining requests

ri is conflicting with rx if s(ri ) ≤ f (rx) (in this setting)

Total runtime : O(n2)
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Earliest Finishing Time First: Implementation

Algorithm : Interval Scheduling Algorithm (R)
A← ∅
while R ≠ ∅ do

Select request rx with smallest finishing time from R
Remove from R all requests conflicting with rx
A← A ∪ {rx}

return A

Efficient implementation: Sort the 2d-array R by f (·)

Maintain index of first “not-deleted” request in R
Add R[index ] to A

Delete all requests R[index . . . n] whose s(ri ) ≤ f (rindex)

▷ Delete means move index to first index with s(ri ) > f (rindex)

Total runtime: O(n)
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Earliest Finishing Time First: Implementation

Algorithm : Interval Scheduling Algorithm (R)
A← ∅
while R ≠ ∅ do

Select request rx with smallest finishing time from R
Remove from R all requests conflicting with rx
A← A ∪ {rx}

return A

source: https://stumash.github.io/Algorithm Notes/greedy/intervals/intervals.html
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