Greedy Interval Scheduling

- Interval Scheduling Generic Greedy Algorithm
- Sub-Optimal Greedy Algorithms
 - Earliest Starting Request First
 - Latest Finishing Request First
 - Shortest Duration Request First
 - Least Conflicting Request First
- Earliest Finish Time First Algorithm
 - Correctness and Optimality
 - Implementation and Runtime

Imdad ullah Khan

Interval Scheduling: Problem

• $\mathcal{R} = \{r_1, r_2, \dots, r_n\}$ (set of requests)

Starting and finishing time of r_i: s(i) and f(i)
 for 1 ≤ i ≤ n s(i) < f(i)

• Duration of request r_i is d_i is f(i) - s(i)



 r_i and r_j are **compatible** if they do not overlap in time

Otherwise r_i and r_j are conflicting

$$\underbrace{s(i) < f(i)}_{r_i \text{ is to the left of } r_j} \quad \text{OR} \quad \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} \quad \text{OR}$$

A set is compatible if all pairs in it are compatible

Interval Scheduling: Generic Greedy Algorithm

Input: A set \mathcal{R} of requests

Output: A largest compatible subset $S \subset \mathcal{R}$

Generic Greedy algorithm

Process requests in a fixed order and select compatible requests greedily

Algorithm Geedy Interval Scheduling Algorithm (\mathcal{R})

 $A \leftarrow \emptyset$ while $\mathcal{R} \neq \emptyset$ do select a request r_x from \mathcal{R} remove from \mathcal{R} all those requests conflicting with r_x $A \leftarrow A \cup \{r_x\}$ return A

By construction the algorithm is correct

 \triangleright (*A* is a compatible subset)

Interval Scheduling: Greedy Algorithm

- Earliest Starting Request First
- Latest Finishing Request First
- Shortest Duration Request First
- Least Conflicting Request First
 - Found a counter example to optimality of each of the above
- Earliest finishing request first

 \triangleright Idea is to make resource free as soon as possible

- Optimal?
 - Produced optimal solution on all above examples
 - Need a proof of optimality

Earliest Finishing Time First: Algorithm

Algorithm : Interval Scheduling Algorithm (\mathcal{R})

```
\begin{array}{l} A \leftarrow \emptyset \\ \text{while } \mathcal{R} \neq \emptyset \text{ do} \\ \text{Select request } r_x \text{ with smallest finishing time from } \mathcal{R} \\ \text{Remove from } \mathcal{R} \text{ all requests conflicting with } r_x \\ A \leftarrow A \cup \{r_x\} \end{array}
```

return A

Correctness: *A* is a feasible solution

- A is a valid output
- $A \subset \mathcal{R}$ and A is compatible
- At every step the algorithm only added r_i that was compatible with all of A so far

Optimality: *A* is an optimal solution

Let $\ensuremath{\mathcal{O}}$ be an optimal solution

We need to prove that |A| = |O|

Note that A = O is not necessary

Both $\{r_1, r_2, r_7, r_8\}$ and $\{r_6, r_2, r_7, r_8\}$ are optimal solutions

Optimality: *A* is an optimal solution

Let $\ensuremath{\mathcal{O}}$ be an optimal solution

We need to prove that |A| = |O|

Note that A = O is not necessary

Let
$$A = a_1, a_2, \ldots, a_k$$

Let $O = p_1, p_2, \ldots, p_m$

Need to prove that |A| = k = m = |O|

Let $A = a_1, a_2, ..., a_k$ $O = p_1, p_2, ..., p_m$

Let A and O both be sorted by finishing time

Lemma: For $1 \le i \le k$ $f(a_i) \le f(p_i)$

▷ Note the range $1 \le i \le k$ cannot be $1 \le i \le m$

Proof uses the intuition (earliest finishing time first)

Our algorithm stays ahead by releasing the resource as early as possible

Let $A = a_1, a_2, ..., a_k$ $O = p_1, p_2, ..., p_m$

Let A and O both be sorted by finishing time

Lemma: For $1 \le i \le k$ $f(a_i) \le f(p_i)$

Proof by Induction on *i*

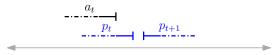
Basis Step: $f(a_1) \leq f(p_1)$ because $f(a_1) \leq f(*)$

Let $A = a_1, a_2, ..., a_k$ $O = p_1, p_2, ..., p_m$

Let A and O both be sorted by finishing time

Lemma: For $1 \le i \le k$ $f(a_i) \le f(p_i)$

Inductive Step: If $f(a_t) \le f(p_t)$, then $f(a_{t+1}) \le f(p_{t+1})$ $f(a_t) \le f(p_t) \le s(p_{t+1})$ $\therefore p_{t+1}$ is compatible with p_t p_{t+1} is compatible with a_t , so p_{t+1} is available for AAlgorithm must choose a_{t+1} with $f(a_{t+1}) \le f(p_{t+1})$



Let $A = a_1, a_2, ..., a_k$ $O = p_1, p_2, ..., p_m$

Let A and O both be sorted by finishing time

Lemma: For $1 \le i \le k$ $f(a_i) \le f(p_i)$

Suppose m > k, $\exists p_{k+1} \in O$, $p_{k+1} \notin A$

$$f(a_k) < f(p_k) \leq s(p_{k+1})$$

 p_{k+1} is compatible with all requests in A

 p_{k+1} is available, $p_{k+1} \in \mathcal{R}$ after iteration k

Earliest Finishing Time First: Implementation

Algorithm : Interval Scheduling Algorithm (\mathcal{R})

```
A \leftarrow \emptyset

while \mathcal{R} \neq \emptyset do

Select request r_x with smallest finishing time from \mathcal{R}

Remove from \mathcal{R} all requests conflicting with r_x

A \leftarrow A \cup \{r_x\}

return A
```

Naive implementation: Uses list or array

- O(n) for finding earliest finishing time request r_x \triangleright FINDMIN by $f(\cdot)$
- O(n) for deleting requests conflicting with $r_x \triangleright$ check all remaining requests
- r_i is conflicting with r_x if $s(r_i) \le f(r_x)$ (in this setting)
- Total runtime : $O(n^2)$

Earliest Finishing Time First: Implementation

Algorithm : Interval Scheduling Algorithm (\mathcal{R})

 $A \leftarrow \emptyset$ while $\mathcal{R} \neq \emptyset$ do Select request r_x with smallest finishing time from \mathcal{R} Remove from \mathcal{R} all requests conflicting with r_x $A \leftarrow A \cup \{r_x\}$ return A

Efficient implementation: Sort the 2*d*-array \mathcal{R} by $f(\cdot)$

- Maintain index of first "not-deleted" request in R
- Add $\mathcal{R}[index]$ to A
- Delete all requests $\mathcal{R}[index \dots n]$ whose $s(r_i) \leq f(r_{index})$

 \triangleright Delete means move index to first index with $s(r_i) > f(r_{index})$

Total runtime: O(n)

Earliest Finishing Time First: Implementation

Algorithm : Interval Scheduling Algorithm (\mathcal{R})

 $A \leftarrow \emptyset$ while $\mathcal{R} \neq \emptyset$ do Select request r_x with smallest finishing time from \mathcal{R} Remove from \mathcal{R} all requests conflicting with r_x $A \leftarrow A \cup \{r_x\}$ return A

