Greedy Interval Scheduling

- Interval Scheduling Generic Greedy Algorithm
- Sub-Optimal Greedy Algorithms
 - Earliest Starting Request First
 - Latest Finishing Request First
 - Shortest Duration Request First
 - Least Conflicting Request First
- Earliest finish time First Algorithm
 - Correctness and Optimality
 - Implementation and Runtime

Imdad ullah Khan

Interval Scheduling: Introduction

You have a mono-task resource

 \triangleright e.g. a lecture room or a research equipment

and multiple requests to use the resource

Each request specifies a start time and finish time

Problem is to schedule (accept/reject) the requests

Selected requests must not overlap in time

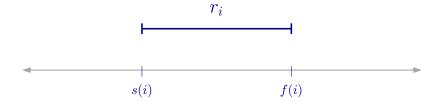
The goal is to accept the maximum number of requests

Interval Scheduling: Introduction

- $\mathcal{R} = \{r_1, r_2, \dots, r_n\}$ (set of requests)
- Starting and finishing time of r_i : s(i) and f(i)

for $1 \le i \le n$ s(i) < f(i)

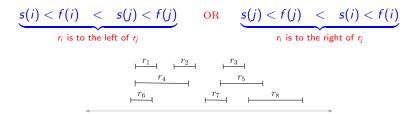
• Duration of request r_i is $d_i = f(i) - s(i)$



Interval Scheduling: Compatible Requests

Requests r_i and r_j are **compatible** if they do not overlap in time

 \triangleright Otherwise r_i and r_j are conflicting



• r_1 and r_2 are compatible, r_4 and r_8 are compatible

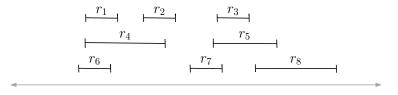
• r_1 and r_4 are conflicting, r_5 and r_7 are conflicting

A set is compatible if all pairs in it are compatible

- $\{r_1, r_2, r_8\}$ is compatible
- $\{r_1, r_2, r_5, r_8\}$ is not compatible

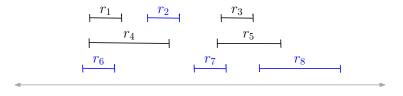
Interval Scheduling: Problem Formulation

Input: A set \mathcal{R} of requests **Output:** A largest compatible subset $S \subset \mathcal{R}$



Interval Scheduling: Problem Formulation

Input: A set \mathcal{R} of requests **Output:** A largest compatible subset $S \subset \mathcal{R}$



Interval Scheduling: Greedy Algorithm

Process requests in a fixed order and select compatible requests greedily

Algorithm : Interval Scheduling Algorithm (\mathcal{R})

```
\begin{array}{l} A \leftarrow \emptyset \\ \textbf{while } \mathcal{R} \neq \emptyset \textbf{ do} \\ \text{ select a request } r_x \text{ from } \mathcal{R} \\ \text{ remove from } \mathcal{R} \text{ all those requests conflicting with } r_x \\ A \leftarrow A \cup \{r_x\} \\ \textbf{return } A \end{array}
```

By construction the algorithm is correct

 \triangleright (A is a compatible subset)