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Kruskal’s Algorithm

Algorithm Kruskal’s Algorithm, G = (V ,E ,w)

Sort edges in increasing order of weights ▷ let e1, e2, . . . , em be the
sorted order

F ← ∅ ▷ Begin with a forest with no edges

for i = 1 to m do

if F ∪ ei does not contain a cycle then

F ← F ∪ {ei}
return F

Imdad ullah Khan (LUMS) Kruskal’s Algorithm 2 / 15



Kruskal’s Algorithm: Example

G = (V,E,w)

A C

B

D E

F

G

8
5

9 7

5

15

6

11

8

97

Initially each vertex is a tree
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(A,D) is picked for merging
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(C,E) is picked for merging
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(A,F ) is picked for merging
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(B,E) is picked for merging
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(A,B) is picked for merging (C,G) is merged skipping (F,C), (B,C), . . .
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Kruskal’s Algorithm: Runtime of Naive Implementation

Algorithm Kruskal’s Algorithm, G = (V ,E ,w)

Sort edges in increasing order of weights ▷ e1, e2, . . . , em is sorted order

F ← ∅
for i = 1 to m do
if F ∪ ei does not contain a cycle then
F ← F ∪ {ei}

return F

Sorting takes O(m logm) = O(m log n) time

Detecting cycles in F ∪ {ei} can be done by dfs

F ∪ {ei} has at most n vertices and n − 2 edges

Total runtime O(m log n) + O(m · (n + n))

Can do better using integer sorting or if input is already sorted

Repeated cycle detection is bottleneck ▷ the 2nd term
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Set Partition

Given a set A, P =
{
A1, . . . ,Ak

}
is a partition of A if

Ai ⊂ A for 1 ≤ i ≤ k

Ai ∩ Aj = ∅ for 1 ≤ i ̸= j ≤ k

A1 ∪ A2 ∪ . . . ∪ Ak = A
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Union-Find data structure

Also known as disjoint sets data structure

Maintains a partition of a set A

Supports the following operations

1 makeset(x): creates a subset of size 1

2 find(x): returns id of the set containing x

3 union(x , y): union(merge) the sets containing x and y

F induces a partition of V

Store F as the above data structure

Every tree in F is a subset of V

Edge (u, v) creates a cycle if u and v are in the same tree

Edge (u, v) creates a cycle ↔ find(u) = find(v)

Pick edge (u, v)↔ union (find(u), find(v))
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Union-Find data structure

F induces a partition of V

Store F as the above data structure

Every tree in F is a subset of V

Edge (u, v) creates a cycle if u and v are in the same tree

Edge (u, v) creates a cycle ↔ find(u) = find(v)

Pick edge (u, v)↔ union (find(u), find(v))

Forest with 3 trees Pick (A,B)→ Merge T1 and T2 T1 and T2 merged into T12
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Union-Find data structure

F induces a partition of V

Store F as the above data structure

Every tree in F is a subset of V

Edge (u, v) creates a cycle if u and v are in the same tree

Edge (u, v) creates a cycle ↔ find(u) = find(v)

Pick edge (u, v)↔ union (find(u), find(v))
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Adding edge (F,C) creates a cycle

find(F ) = find(C)
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Kruskal’s Algorithm with Union-Find

Algorithm Kruskal’s Algorithm with Union-Find

for v ∈ V do
makeset(v)

Sort edges in increasing order of weights
F ← ∅
for i = 1 to m do ei = (u, v)

if find(u) ̸= find(v) then

F ← F ∪ {ei}
union(u, v)

return F

Runtime :
∑ 

O(n) Makeset

O(n) Union

O(m) Find
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Union-Find Data Structure: Implementation

Maintains a partition of a set A

Supports the following operations

makeset(x): creates a subset of size 1

find(x): returns id of the set containing x

union(x , y): union(merge) the sets containing x and y

Store each subset as a linked list

Each node of the list has a pointer to the first

The first node (an element of the subset) is the rep of the list

rep of a list serves as an id of the subset

x y z

u v

A1 = {x, y, z}

A2 = {u, v}

rep(A1) = x

rep(A2) = u

Node
class/struct

int element
Node ∗ next
Node ∗ rep
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Union-Find Data Structure: Implementation

Makeset(u):

Make a new list node rep-pointer to itself

Store pointer to node in P[u] (array indexed by A)

Runtime O(1)

function makeset(u)
ptr ← new(Node)
ptr · element ← u
ptr · next ← null
ptr · rep ← ptr
P[u]← ptr

x E
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Union-Find Data Structure: Implementation

find(u):

Get pointer from P[u]

Return vertex name at rep-pointer of node at P[u]

Runtime O(1)

function find(u)
ptr ← P[u]
rep ← ptr · rep
return rep · element

x y z
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Union-Find Data Structure: Implementation

union(u, v):

Get pointers from P[u] and P[v ]

Add Listu to Listv (say starting from second node)

update rep-pointers at all nodes in Listu

Runtime O(1) + O(|Listu|)

A1 = {x, y, z} A2 = {u, v}

x y zA12 = {x, y, z, u, v} u v

u vx y z
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Union-Find Data Structure: Implementation

Algorithm Kruskal’s Algorithm with Union-Find
for v ∈ V do
makeset(v)

Sort edges in increasing order of weights
F ← ∅
for i = 1 to m do ei = (u, v)

if find(u) ̸= find(v) then
F ← F ∪ {ei}
union(u, v)

return F

Runtime :
∑ 

O(n) makeset

O(n) union

O(m) find

Worst case: A list length could be O(n)
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Union-Find Data Structure: Implementation

Union by rank

In the first node save length of the list

Called rank of the set (cardinality)

For union(u, v) insert smaller rank set into bigger

potentially fewer rep-updates common sense

A little more careful analysis lead to see the power of this simple rule

Every time a rep(u) is updated its new list is at least doubled

Max number of rep updates per element (vertex): O(log n)

Total rep updates for V is O(n log n)

So total runtime of all union(·, ·) is O(n) + n log n
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