Algorithms

Minimum Spanning Tree

m The Cycle Property (Red Rule)

m Reverse Delete Algorithm for MST
m Kruskal's Algorithm for MST

m Runtime and Implementation

m Disjoint Sets Data Structure
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Kruskal's Algorithm

Algorithm Kruskal's Algorithm, G = (V, E, w)

Sort edges in increasing order of weights > let er, e,...,en be the
sorted order
F+0 > Begin with a forest with no edges

for i=1to mdo
if F U e does not contain a cycle then
F<«+ FU {e;}

return F

IMDAD ULLAH KHAN (LUMS) Kruskal's Algorithm 2/15



Kruskal's Algorithm: Example
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Kruskal's Algorithm: Runtime of Naive Implementation

Algorithm Kruskal's Algorithm, G = (V, E, w)
Sort edges in increasing order of weights > e1, e,..., ey, is sorted order
F«0
for i=1to mdo
if F U e; does not contain a cycle then
F+ FU {e,-}
return F

Sorting takes O(mlog m) = O(mlogn) time
m Detecting cycles in F U {e;} can be done by DFs

F U {ei} has at most n vertices and n — 2 edges

Total runtime O(mlogn) + O(m- (n+ n))
m Can do better using integer sorting or if input is already sorted

m Repeated cycle detection is bottleneck > the 2nd term
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Set Partition

Given aset A, P = {A1,..., A} is a partition of A if
mA CAforl<i<k

lAiﬂAj:(bforlSi?éjSk

B AUAU...UA=A
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UNION-FIND data structure

m Also known as disjoint sets data structure

m Maintains a partition of a set A

Supports the following operations
MAKESET(x): creates a subset of size 1
FIND(x): returns id of the set containing x

UNION(X, y): union(merge) the sets containing x and y

F induces a partition of V
m Store F as the above data structure

m Every tree in F is a subset of V

Edge (u, v) creates a cycle if u and v are in the same tree

Edge (u, v) creates a cycle <+ FIND(u) = FIND(v)

Pick edge (u, v) <> UNION (FIND(u), FIND(Vv))
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UNION-FIND data structure

m F induces a partition of V

m Store F as the above data structure

m Every tree in F is a subset of V
m Edge (u, V) creates a cycle if u and v are in the same tree
m Edge (u,v) creates a cycle <+ FIND(u) = FIND(v)
m Pick edge (u, v) > UNION (FIND(u), FIND(v))
®—*® On
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Forest with 3 trees Pick (A, B) — Merge T and T, T, and T» merged into T
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UNION-FIND data structure

m F induces a partition of V

m Store F as the above data structure

Every tree in F is a subset of V

Edge (u, v) creates a cycle if u and v are in the same tree

Edge (u, v) creates a cycle <+ FIND(u) = FIND(v)

Pick edge (u,v) <+ UNION (FIND(u), FIND(v))

Adding edge (F,C) creates a cycle
FIND(F) = FIND(C)

IMDAD ULLAH KHAN (LUMS) Kruskal's Algorithm 8/15



Kruskal's Algorithm with UNION-FIND

Algorithm Kruskal's Algorithm with UNION-FIND
for ve V do
MAKESET(V)

Sort edges in increasing order of weights
F«0

for i =1 to mdo e = (u,v)
if FIND(u) # FIND(v) then
F+ FuU {e,-}
UNION(u, v)

return F

O(n) MAKESET
Runtime Z O(n) UNION
O(m) FIND
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UNION-FIND Data Structure: Implementation

Maintains a partition of a set A

Supports the following operations
MAKESET(x): creates a subset of size 1
FIND(x): returns id of the set containing x

UNION(X, y): union(merge) the sets containing x and y

Store each subset as a linked list
Each node of the list has a pointer to the first
The first node (an element of the subset) is the rep of the list

rep of a list serves as an id of the subset

Node {I Y, Z}

class/struct rep(A . . .

int element
Node * next Ay = {u U}

b
Node * rep 7"6])(142) —u
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UNION-FIND Data Structure: Implementation

MAKESET(u):

Make a new list node rep-pointer to itself

Store pointer to node in P[u] (array indexed by A)
Runtime O(1)

function MAKESET(u)
ptr < NEW(Node)
ptr - element < u
ptr - next < null
ptr - rep < ptr
Plu] < ptr
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UNION-FIND Data Structure: Implementation

FIND(u):

Get pointer from P[u]

Return vertex name at rep-pointer of node at P[u]
Runtime O(1)

function FIND(u)
ptr < P[u]
rep < ptr - rep
return rep - element
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UNION-FIND Data Structure: Implementation

UNION(u, v):

Get pointers from P[u] and P[v]

Add List, to List, (say starting from second node)
update rep-pointers at all nodes in List,

Runtime O(1) 4+ O(|List,|)

A= {z,y.2} As = {u,v)

A ={z,y,z,u,v} T u WHWW
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UNION-FIND Data Structure: Implementation

Algorithm Kruskal's Algorithm with UNION-FIND

for ve V do
MAKESET(V)
Sort edges in increasing order of weights
F«0
for i=1to mdo e = (u,v)
if FIND(u) # FIND(v) then
F+ FU {e,-}
UNION(u, v)
return F

O(n) MAKESET
Runtime Z O(n) UNION
O(m) FIND

Worst case: A list length could be O(n)
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UNION-FIND Data Structure: Implementation

Union by rank

m In the first node save length of the list

m Called rank of the set (cardinality)

For UNION(u, v) insert smaller rank set into bigger

potentially fewer rep-updates common sense

m A little more careful analysis lead to see the power of this simple rule

Every time a rep(u) is updated its new list is at least doubled
m Max number of rep updates per element (vertex): O(log n)

Total rep updates for V is O(nlog n)

m So total runtime of all UNION(,-) is O(n) + nlogn
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