Minimum Spanning Tree

- The Cycle Property (Red Rule)
 - Reverse Delete Algorithm for MST
- Kruskal's Algorithm for MST
- Runtime and Implementation
 - Disjoint Sets Data Structure

Imdad ullah Khan

Algorithm Kruskal's Algorithm, G = (V, E, w)

Sort edges in increasing order of weights \triangleright let e_1, e_2, \ldots, e_m be the sorted order

 $F \leftarrow \emptyset$ \triangleright Begin with a forest with no edges

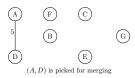
for i = 1 to m do

if $F \cup e_i$ does not contain a cycle **then**

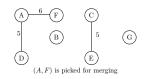
$$F \leftarrow F \cup \{e_i\}$$

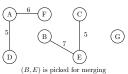
return F

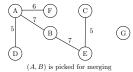
Kruskal's Algorithm: Example



(C,E) is picked for merging







(C,G) is merged skipping $(F,C),(B,C),\ldots$

Kruskal's Algorithm: Runtime of Naive Implementation

Algorithm Kruskal's Algorithm, G = (V, E, w)

Sort edges in increasing order of weights $\triangleright e_1, e_2, \dots, e_m$ is sorted order $F \leftarrow \emptyset$

for i = 1 to m do

if $F \cup e_i$ does not contain a cycle then $F \leftarrow F \cup \{e_i\}$

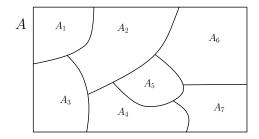
return F

- Sorting takes $O(m \log m) = O(m \log n)$ time
- Detecting cycles in $F \cup \{e_i\}$ can be done by DFS
- $F \cup \{e_i\}$ has at most *n* vertices and n-2 edges
- Total runtime $O(m \log n) + O(m \cdot (n + n))$
- Can do better using integer sorting or if input is already sorted
- Repeated cycle detection is bottleneck

▷ the 2nd term

Set Partition

Given a set
$$A$$
, $\mathcal{P} = \{A_1, \dots, A_k\}$ is a partition of A if
 $A_i \subset A$ for $1 \le i \le k$
 $A_i \cap A_j = \emptyset$ for $1 \le i \ne j \le k$
 $A_1 \cup A_2 \cup \dots \cup A_k = A$

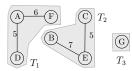


UNION-FIND data structure

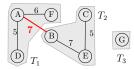
- Also known as disjoint sets data structure
- Maintains a partition of a set A
- Supports the following operations
 - **1** MAKESET(x): creates a subset of size 1
 - **2** FIND(x): returns id of the set containing x
 - **3** UNION(x, y): union(merge) the sets containing x and y
- F induces a partition of V
- Store *F* as the above data structure
- Every tree in F is a subset of V
- Edge (u, v) creates a cycle if u and v are in the same tree
- Edge (u, v) creates a cycle \leftrightarrow FIND(u) = FIND(v)
- Pick edge $(u, v) \leftrightarrow$ UNION (FIND(u), FIND(v))

UNION-FIND data structure

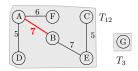
- F induces a partition of V
- Store *F* as the above data structure
- Every tree in F is a subset of V
- Edge (u, v) creates a cycle if u and v are in the same tree
- Edge (u, v) creates a cycle \leftrightarrow FIND(u) = FIND(v)
- Pick edge $(u, v) \leftrightarrow$ UNION (FIND(u), FIND(v))



Forest with 3 trees



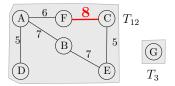
Pick $(A, B) \rightarrow Merge T_1$ and T_2



 $T_1 \ {\rm and} \ T_2 \ {\rm merged} \ {\rm into} \ T_{12}$

UNION-FIND data structure

- F induces a partition of V
- Store *F* as the above data structure
- Every tree in F is a subset of V
- Edge (u, v) creates a cycle if u and v are in the same tree
- Edge (u, v) creates a cycle \leftrightarrow FIND(u) = FIND(v)
- Pick edge $(u, v) \leftrightarrow$ UNION (FIND(u), FIND(v))



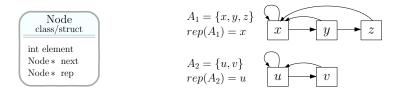
Adding edge (F, C) creates a cycle FIND(F) = FIND(C)

Kruskal's Algorithm with UNION-FIND

Algorithm Kruskal's Algorithm with UNION-FIND for $v \in V$ do MAKESET(v)Sort edges in increasing order of weights $F \leftarrow \emptyset$ for i = 1 to m do $e_i = (u, v)$ if $FIND(u) \neq FIND(v)$ then $F \leftarrow F \cup \{e_i\}$ UNION(u, v)return F

Runtime :
$$\sum \begin{cases} O(n) & \text{Makeset} \\ O(n) & \text{Union} \\ O(m) & \text{Find} \end{cases}$$

- Maintains a partition of a set A
- Supports the following operations
- MAKESET(x): creates a subset of size 1
- FIND(x): returns id of the set containing x
- UNION(x, y): union(merge) the sets containing x and y
- Store each subset as a linked list
- Each node of the list has a pointer to the first
- The first node (an element of the subset) is the **rep** of the list
- rep of a list serves as an id of the subset



• MAKESET(u):

- Make a new list node rep-pointer to itself
- Store pointer to node in P[u] (array indexed by A)

• Runtime O(1)

```
function MAKESET(u)

ptr \leftarrow NEW(Node)

ptr \cdot element \leftarrow u

ptr \cdot next \leftarrow null

ptr \cdot rep \leftarrow ptr

P[u] \leftarrow ptr
```

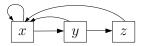

- FIND(u):
- Get pointer from *P*[*u*]
- Return vertex name at rep-pointer of node at P[u]
- Runtime O(1)

```
function FIND(u)

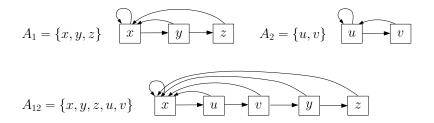
ptr \leftarrow P[u]

rep \leftarrow ptr \cdot rep

return rep \cdot element
```



- UNION(u, v):
- Get pointers from P[u] and P[v]
- Add *List*^{*u*} to *List*^{*v*} (say starting from second node)
- update rep-pointers at all nodes in List_u
- Runtime $O(1) + O(|List_u|)$



Algorithm Kruskal's Algorithm with UNION-FIND

```
for v \in V do

MAKESET(v)

Sort edges in increasing order of weights

F \leftarrow \emptyset

for i = 1 to m do e_i = (u, v)

if FIND(u) \neq FIND(v) then

F \leftarrow F \cup \{e_i\}

UNION(u, v)

return F
```

Runtime :
$$\sum \begin{cases} O(n) & \text{MAKESET} \\ O(n) & \text{UNION} \\ O(m) & \text{FIND} \end{cases}$$

Worst case: A list length could be O(n)

Union by rank

- In the first node save length of the list
- Called rank of the set (cardinality)
- For UNION(u, v) insert smaller rank set into bigger
- potentially fewer rep-updates common sense
- A little more careful analysis lead to see the power of this simple rule
- Every time a rep(u) is updated its new list is at least doubled
- Max number of *rep* updates per element (vertex): $O(\log n)$
- Total rep updates for V is $O(n \log n)$
- So total runtime of all UNION (\cdot, \cdot) is $O(n) + n \log n$