
Algorithms

Minimum Spanning Tree

The Cycle Property (Red Rule)

Reverse Delete Algorithm for MST

Kruskal’s Algorithm for MST

Runtime and Implementation

Disjoint Sets Data Structure

Imdad ullah Khan

Imdad ullah Khan (LUMS) Kruskal’s Algorithm 1 / 9



Minimum Spanning Tree: Review

T = (V ′,E ′) is a spanning tree of G = (V ,E ) if

T is a spanning subgraph of G
T is a tree

Weight of a tree T is sum of weights of its edges w(T ) =
∑
e∈T

w(e)

A tree is a (minimally) connected graph with no cycles

A tree on n vertices has n − 1 edges

A MST is a spanning tree with minimum weight

Computing MST is a classic optimization problem with many applications
in graph analysis, combinatorial optimization, network formation,..

Imdad ullah Khan (LUMS) Kruskal’s Algorithm 2 / 9



Minimum Spanning Tree Problem

Input: A weighted graph G = (V ,E ,w), w : E → R
Output: A spanning tree of G with minimum total weight

E

A

F

D

C

B

3

2

1

4

8
5

6

6G
13

E

A

F

D

C

B

3

2

1

4

8
5

6

6G
13

E

A

F

D

C

B

2

1

4

5

6
G

13
E

A

F

D

C

B

2

1

4

5

6

G
13

A weighted graph G A spanning tree of G with weight 34

An MST of G with weight 31 An MST of G with weight 31

MST does not have to be unique

Imdad ullah Khan (LUMS) Kruskal’s Algorithm 3 / 9



MST Algorithms

Input: An undirected weighted graph G = (V ,E ,w), w : E → R
Output: A spanning tree of G with minimum total weight

We discuss two greedy algorithms to find MST in a graph

Prim’s Algorithm (1957) [also Dijkstra ‘59, Jarnik ‘30]

Kruskal’s Algorithm (1956)

We make the following assumptions

1 Input graph G is connected
Otherwise there is no spanning tree

Easy to check in preprocessing (e.g., BFS or DFS).

For disconnected graphs can find minimum spanning forest

2 Edge weights are distinct
Otherwise there can be more than one MSTs

Algorithms remain correct with arbitrarily breaking ties

Analysis is slightly complicated

Imdad ullah Khan (LUMS) Kruskal’s Algorithm 4 / 9



Cuts in Graphs

A cut in G is a subset S ⊂ V

Denoted as [S ,S ], S = ∅ and S = V are trivial cuts

An edge (u, v) is crossing the cut [S ,S ], if u ∈ S and v ∈ S

Empty Cut Lemma:

A graph G is disconnected iff it has a cut with no crossing edge

Double Crossing Lemma

If a cycle crosses a cut, then it has to cross at least twice

Lonely Crossing Lemma

If e is the only edge crossing a cut [S ,S ], then it is not in any cycle

The Blue Rule

If an edge e ∈ E is the lightest edge crossing some cut [S ,S ], then e
belongs to the MST of G

Imdad ullah Khan (LUMS) Kruskal’s Algorithm 5 / 9



The cycle property (Red Rule)

If an edge e ∈ E is the heaviest edge on some cycle C , then e does not belong to
the MST of G

This statement assume edge weights are unique. More generally,

If an edge e ∈ E is a heaviest edge on some cycle C , then e does not belong to
some MST of G

Imdad ullah Khan (LUMS) Kruskal’s Algorithm 6 / 9



The cycle property (Red Rule): Proof

If an edge e ∈ E is the heaviest edge on some cycle C , then e does not belong to
the MST of G

Proof by contradiction:

Let e = (u, v) be the heaviest edge across a cycle C

Suppose e ∈ T ∗, “the MST” of G

Deleting e from T ∗ disconnects T ∗ ▷ a tree is minimally connected

Let S = R(u) in T ∗ \ {e}, consider [S ,S ]
e and another edge f ̸= e ∈ C crosses [S ,S ] ▷ double cut lemma

T ′ = T ∗ \ {e} ∪ {f } and w(T ′) < w(T ∗)

w(e) = 17

w(f) = 5

u

v

Imdad ullah Khan (LUMS) Kruskal’s Algorithm 7 / 9



Reverse Delete Algorithm for MST

Input: An undirected weighted graph G = (V ,E ,w), w : E → R
Output: A spanning tree of G with minimum total weight

Algorithm Reverse Delete Algorithm for MST

Sort edges in decreasing order of weights ▷ let e1, e2, . . . , em be the
sorted order

G ′ ← G ▷ Begin with the whole graph

for i = 1 to m do

if G ′ \ {ei} is connected then

G ′ ← G ′ \ {ei}
return G ′

Imdad ullah Khan (LUMS) Kruskal’s Algorithm 8 / 9



Reverse Delete Algorithm

Algorithm Reverse Delete Algorithm for MST
Sort edges in decreasing order of weights ▷ e1, e2, . . . , em is sorted order
G ′ ← G ▷ Begin with the whole graph
for i = 1 to m do

if G ′ \ {ei} is connected then
G ′ ← G ′ \ {ei}

return G ′

Removing an edge does not disconnect a graph iff it is on a cycle

Since G is connected, by design the returned graph G ′ is connected

G ′ is a tree, ∵ an edge from a cycle wouldn’t disconnect it

Optimality follows from the red rule

If e is the heaviest edge on a cycle, then e is not in the MST

Check connectivity of G \ {ei} by bfs/dfs

Imdad ullah Khan (LUMS) Kruskal’s Algorithm 9 / 9


