Minimum Spanning Tree

- The Cycle Property (Red Rule)
 - Reverse Delete Algorithm for MST
- Kruskal's Algorithm for MST
- Runtime and Implementation
 - Disjoint Sets Data Structure

Imdad ullah Khan

Minimum Spanning Tree: Review

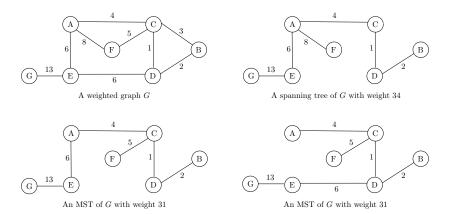
• T = (V', E') is a spanning tree of G = (V, E) if

- T is a spanning subgraph of G
- T is a tree
- Weight of a tree T is sum of weights of its edges $w(T) = \sum_{e \in T} w(e)$
- A tree is a (minimally) connected graph with no cycles
- A tree on n vertices has n-1 edges
- A MST is a spanning tree with minimum weight

Computing MST is a classic optimization problem with many applications in graph analysis, combinatorial optimization, network formation,...

Minimum Spanning Tree Problem

Input: A weighted graph G = (V, E, w), $w : E \to \mathbb{R}$ **Output:** A spanning tree of G with minimum total weight



MST does not have to be unique

IMDAD ULLAH KHAN (LUMS)

Kruskal's Algorithm

MST Algorithms

Input: An undirected weighted graph G = (V, E, w), $w : E \to \mathbb{R}$ **Output:** A spanning tree of G with minimum total weight

We discuss two greedy algorithms to find MST in a graph

- Prim's Algorithm (1957) [also Dijkstra '59, Jarnik '30]
- Kruskal's Algorithm (1956)
- We make the following assumptions
 - **1** Input graph G is connected
 - Otherwise there is no spanning tree
 - Easy to check in preprocessing (e.g., BFS or DFS).
 - For disconnected graphs can find minimum spanning forest

2 Edge weights are distinct

- Otherwise there can be more than one MSTs
- Algorithms remain correct with arbitrarily breaking ties
- Analysis is slightly complicated

A cut in G is a subset $S \subset V$

- Denoted as $[S, \overline{S}]$, $S = \emptyset$ and S = V are trivial cuts
- An edge (u, v) is crossing the cut $[S, \overline{S}]$, if $u \in S$ and $v \in \overline{S}$
- Empty Cut Lemma:
 - A graph G is disconnected iff it has a cut with no crossing edge
- Double Crossing Lemma
 - If a cycle crosses a cut, then it has to cross at least twice
- Lonely Crossing Lemma
 - If e is the only edge crossing a cut $[S, \overline{S}]$, then it is not in any cycle
- The Blue Rule
 - If an edge $e \in E$ is the lightest edge crossing some cut $[S, \overline{S}]$, then e belongs to the MST of G

If an edge $e \in E$ is the heaviest edge on some cycle C, then e does not belong to the MST of G

This statement assume edge weights are unique. More generally,

If an edge $e \in E$ is a heaviest edge on some cycle C, then e does not belong to some MST of G

The cycle property (Red Rule): Proof

If an edge $e \in E$ is the heaviest edge on some cycle C, then e does not belong to the MST of G

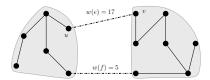
Proof by contradiction:

- Let e = (u, v) be the heaviest edge across a cycle C
- Suppose $e \in T^*$, "the MST" of G
- Deleting *e* from T^* disconnects T^*
- Let S = R(u) in $T^* \setminus \{e\}$, consider $[S, \overline{S}]$
- *e* and another edge $f \neq e \in C$ crosses $[S, \overline{S}]$

double cut lemma

▷ a tree is minimally connected

• $T' = T^* \setminus \{e\} \cup \{f\}$ and $w(T') < w(T^*)$



Reverse Delete Algorithm for MST

Input: An undirected weighted graph G = (V, E, w), $w : E \to \mathbb{R}$ **Output:** A spanning tree of G with minimum total weight

AlgorithmReverse Delete Algorithm for MSTSort edges in decreasing order of weights \triangleright let e_1, e_2, \ldots, e_m be thesorted order $G' \leftarrow G$ $G' \leftarrow G$ \triangleright Begin with the whole graphfor i = 1 to m doif $G' \setminus \{e_i\}$ is connected then $G' \leftarrow G' \setminus \{e_i\}$ return G'

Reverse Delete Algorithm

Algorithm Reverse Delete Algorithm for MST

```
Sort edges in decreasing order of weights

G' \leftarrow G

for i = 1 to m do

if G' \setminus \{e_i\} is connected then

G' \leftarrow G' \setminus \{e_i\}

return G'
```

▷ e₁, e₂, ..., e_m is sorted order
▷ Begin with the whole graph

Removing an edge does not disconnect a graph iff it is on a cycle

- Since G is connected, by design the returned graph G' is connected
- G' is a tree, \therefore an edge from a cycle wouldn't disconnect it
- Optimality follows from the red rule

If e is the heaviest edge on a cycle, then e is not in the MST

• Check connectivity of
$$G \setminus \{e_i\}$$
 by $_{\mathrm{BFS}}/_{\mathrm{DFS}}$