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Minimum Spanning Tree: Review

T = (V ′,E ′) is a spanning tree of G = (V ,E ) if

T is a spanning subgraph of G
T is a tree

Weight of a tree T is sum of weights of its edges w(T ) =
∑
e∈T

w(e)

A tree is a (minimally) connected graph with no cycles

A tree on n vertices has n − 1 edges

A MST is a spanning tree with minimum weight

Computing MST is a classic optimization problem with many applications
in graph analysis, combinatorial optimization, network formation,..
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Minimum Spanning Tree Problem

Input: A weighted graph G = (V ,E ,w), w : E → R
Output: A spanning tree of G with minimum total weight
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A weighted graph G A spanning tree of G with weight 34

An MST of G with weight 31 An MST of G with weight 31

MST does not have to be unique
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MST Algorithms

Input: An undirected weighted graph G = (V ,E ,w), w : E → R
Output: A spanning tree of G with minimum total weight

We discuss two greedy algorithms to find MST in a graph

Prim’s Algorithm (1957) [also Dijkstra ‘59, Jarnik ‘30]

Kruskal’s Algorithm (1956)

We make the following assumptions

1 Input graph G is connected
Otherwise there is no spanning tree

Easy to check in preprocessing (e.g., BFS or DFS).

For disconnected graphs can find minimum spanning forest

2 Edge weights are distinct
Otherwise there can be more than one MSTs

Algorithms remain correct with arbitrarily breaking ties

Analysis is slightly complicated
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Cuts in Graphs

A cut in G is a subset S ⊂ V

Denoted as [S ,S ], S = ∅ and S = V are trivial cuts

An edge (u, v) is crossing the cut [S ,S ], if u ∈ S and v ∈ S

Empty Cut Lemma:

A graph G is disconnected iff it has a cut with no crossing edge

Double Crossing Lemma

If a cycle crosses a cut, then it has to cross at least twice

Lonely Crossing Lemma

If e is the only edge crossing a cut [S ,S ], then it is not in any cycle

The Blue Rule

If an edge e ∈ E is the lightest edge crossing some cut [S ,S ], then e
belongs to the MST of G
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The cycle property (Red Rule)

If an edge e ∈ E is the heaviest edge on some cycle C , then e does not belong to
the MST of G

This statement assume edge weights are unique. More generally,

If an edge e ∈ E is a heaviest edge on some cycle C , then e does not belong to
some MST of G

Imdad ullah Khan (LUMS) Kruskal’s Algorithm 6 / 9



The cycle property (Red Rule): Proof

If an edge e ∈ E is the heaviest edge on some cycle C , then e does not belong to
the MST of G

Proof by contradiction:

Let e = (u, v) be the heaviest edge across a cycle C

Suppose e ∈ T ∗, “the MST” of G

Deleting e from T ∗ disconnects T ∗ ▷ a tree is minimally connected

Let S = R(u) in T ∗ \ {e}, consider [S ,S ]
e and another edge f ̸= e ∈ C crosses [S ,S ] ▷ double cut lemma

T ′ = T ∗ \ {e} ∪ {f } and w(T ′) < w(T ∗)

w(e) = 17

w(f) = 5

u

v

Imdad ullah Khan (LUMS) Kruskal’s Algorithm 7 / 9



Reverse Delete Algorithm for MST

Input: An undirected weighted graph G = (V ,E ,w), w : E → R
Output: A spanning tree of G with minimum total weight

Algorithm Reverse Delete Algorithm for MST

Sort edges in decreasing order of weights ▷ let e1, e2, . . . , em be the
sorted order

G ′ ← G ▷ Begin with the whole graph

for i = 1 to m do

if G ′ \ {ei} is connected then

G ′ ← G ′ \ {ei}
return G ′
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Reverse Delete Algorithm

Algorithm Reverse Delete Algorithm for MST
Sort edges in decreasing order of weights ▷ e1, e2, . . . , em is sorted order
G ′ ← G ▷ Begin with the whole graph
for i = 1 to m do

if G ′ \ {ei} is connected then
G ′ ← G ′ \ {ei}

return G ′

Removing an edge does not disconnect a graph iff it is on a cycle

Since G is connected, by design the returned graph G ′ is connected

G ′ is a tree, ∵ an edge from a cycle wouldn’t disconnect it

Optimality follows from the red rule

If e is the heaviest edge on a cycle, then e is not in the MST

Check connectivity of G \ {ei} by bfs/dfs
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