
Algorithms

Minimum Spanning Tree

Minimum Spanning Tree

Prim’s Algorithm for MST

Cuts in Graphs

Correctness and Optimality of Prim’s Algorithm

Runtime
Basic Implementation

Vertex-Centric Implementation

Heap Based Implementation

Imdad ullah Khan

Imdad ullah Khan (LUMS) Prim’s Algorithm 1 / 9



Prim’s Algorithm

Input: A weighted graph G = (V ,E ,w), w : E → R
Output: A spanning tree of G with minimum total weight

Algorithm Prim’s Algorithm for MST in G = (V ,E ,w)

R ← {s} ▷ s ∈ V an arbitrary vertex
T ← ∅ ▷ Begin with an empty tree
while R ̸= V do
Get e = (u, v), u ∈ R, v /∈ R with minimum w(uv)
T ← T ∪ {e}
R ← R ∪ {v}

R

T

Imdad ullah Khan (LUMS) Prim’s Algorithm 2 / 9



Prim’s Algorithm: Naive Implementation

Algorithm Prim’s Algorithm, G = (V ,E ,w)

R ← {s} ▷ s ∈ V an arbitrary vertex
T ← ∅ ▷ Begin with an empty tree
while R ̸= V do
Get e = (u, v), u ∈ R, v /∈ R with minimum w(uv)
T ← T ∪ {e}
R ← R ∪ {v}

While loop runs for O(n) iterations

Find min crossing edge takes O(m)

Total runtime O(nm)

Repeatedly finding minimum is expensive R

T

Imdad ullah Khan (LUMS) Prim’s Algorithm 3 / 9



Prim’s Algorithm: Vertex-Centric Implementation

Store information at vertices (target of many edges)

Key at vertices is weight of lightest edge incident on it

Find smallest vertex by key

Keys are easy to update, just traverse neighbors of new vertex in R

A

S

C

B

1

2

3

1

4

5
6

key = 11

key = min{2, 3}

key = 1

key = min{4, 5}

key = 6

key = ∞

R R̄

Imdad ullah Khan (LUMS) Prim’s Algorithm 4 / 9



Prim’s Algorithm: Vertex Centric Implementaiton

Algorithm Prim’s Algorithm, G = (V ,E ,w)

key [1 . . . n]← [∞ . . .∞]
key [s]← 0
prev(v)← null ▷ keeps the other end of min crossing edge incident on v
while R ̸= V do

Select v ∈ R with minimum key [v ]
R ← R ∪ {v}
T ← T ∪ {(prev [v ], v)}
for each z ∈ N(v) ∩ R do

if key [z] > w(vz) then

key [z]← w(vz)
prev [z]← v

While loop runs for O(n) iterations

Find minimum score vertex takes O(n) time

Need to update only neighbors of added vertex

Total runtime O(n2 +m)

Better than last one, esp. for dense graphs

Repeatedly finding minimum key is expensive

R

T

Imdad ullah Khan (LUMS) Prim’s Algorithm 5 / 9



Min-Heap

A rooted-tree structure satisfying the heap property

If u is parent of v , then key(u) < key(v)

Uses a complete binary tree (binary heap)

Every node has a key smaller than both its children

Root always contains the smallest element

Operations:

H ← initialize()

insert(H, v , k)
v ← extract-min(H)
delete(H, v)
decrease-key(H, v , k ′)

Imdad ullah Khan (LUMS) Prim’s Algorithm 6 / 9



Prim’s Algorithm: Heap based Implementation

Store information at vertices (target of many edges)

Key at vertices is weight of lightest edge incident on it

Find smallest vertex by key

Easy to update keys, traverse neighbors of new vertex in R

A

S

C

B

1

2

3

1

4

5
6

key = 11

key = min{2, 3}

key = 1

key = min{4, 5}

key = 6

key = ∞

R R̄

Store all vertices in R in a heap H with keys

Initialize H with V , key of s is 0 for others ∞
Save pointers (location in heap) to each vertex

v ← extract-min(H) to add to R

Traverse N(v) to update keys of neighbors in R

Imdad ullah Khan (LUMS) Prim’s Algorithm 7 / 9



Prim’s Algorithm: Heap based Implementation

Algorithm Prim’s Algorithm, G = (V ,E ,w)

R ← s, T ← ∅
for v ∈ V do

v .key ←∞
prev(v)← null ▷ keeps the other end of min crossing edge incident on v

H ← initialize(V , keys)
decrease-key(H, s, 0)
while R ̸= V do
v ← extract-min(H)
T ← T ∪ {(v , prev(v))}
R ← R ∪ {v}
for z ∈ N(v) do
if z .key > w(vz) then
decrease-key(H, z ,w(vz))
prev(z)← v

Imdad ullah Khan (LUMS) Prim’s Algorithm 8 / 9



Prim’s Algorithm: Heap based Implementation

In total there are n extract-min operations

On extracting v , there are O(deg(v)) decrease-key operations

Each extract-min takes O(log n) time

Each decrease-key takes O(log n) time

Total runtime n log n +m log n = (n +m) log n

Imdad ullah Khan (LUMS) Prim’s Algorithm 9 / 9


