Minimum Spanning Tree

- Minimum Spanning Tree
- Prim's Algorithm for MST
- Cuts in Graphs
- Correctness and Optimality of Prim's Algorithm
- Runtime
 - Basic Implementation
 - Vertex-Centric Implementation
 - Heap Based Implementation

Imdad ullah Khan

Prim's Algorithm

Input: A weighted graph $G = (V, E, w), w : E \to \mathbb{R}$

Output: A spanning tree of G with minimum total weight

Algorithm Prim's Algorithm for MST in G = (V, E, w)

$$R \leftarrow \{s\}$$
 $\triangleright s \in V$ an arbitrary vertex $T \leftarrow \emptyset$ \triangleright Begin with an empty tree **while** $R \neq V$ **do** Get $e = (u, v)$, $u \in R, v \notin R$ with minimum $w(uv)$ $T \leftarrow T \cup \{e\}$ $R \leftarrow R \cup \{v\}$

Prim's Algorithm: Naive Implementation

Algorithm Prim's Algorithm, G = (V, E, w)

```
R \leftarrow \{s\} \triangleright s \in V an arbitrary vertex T \leftarrow \emptyset \triangleright Begin with an empty tree while R \neq V do

Get e = (u, v), u \in R, v \notin R with minimum w(uv)

T \leftarrow T \cup \{e\}
R \leftarrow R \cup \{v\}
```

- While loop runs for O(n) iterations
- Find min crossing edge takes O(m)
- Total runtime O(nm)
- Repeatedly finding minimum is expensive

Prim's Algorithm: Vertex-Centric Implementation

- Store information at vertices (target of many edges)
- Key at vertices is weight of lightest edge incident on it
- Find smallest vertex by key
- Keys are easy to update, just traverse neighbors of new vertex in R

Prim's Algorithm: Vertex Centric Implementaiton

Algorithm Prim's Algorithm, G = (V, E, w)

```
\begin{aligned} & key[1\dots n] \leftarrow [\infty \dots \infty] \\ & key[s] \leftarrow 0 \\ & prev(v) \leftarrow null \qquad \qquad \triangleright \text{ keeps the other end of min crossing edge incident on } v \\ & \textbf{while } R \neq V \textbf{ do} \\ & \text{Select } v \in \overline{R} \text{ with minimum } key[v] \\ & R \leftarrow R \cup \{v\} \\ & T \leftarrow T \cup \{(prev[v], v)\} \\ & \textbf{for each } z \in N(v) \cap \overline{R} \textbf{ do} \\ & \textbf{if } key[z] > w(vz) \textbf{ then} \\ & key[z] \leftarrow w(vz) \\ & prev[z] \leftarrow v \end{aligned}
```

- While loop runs for O(n) iterations
- Find minimum score **vertex** takes O(n) time
- Need to update only neighbors of added vertex
- Total runtime $O(n^2 + m)$
- Better than last one, esp. for dense graphs
- Repeatedly finding minimum key is expensive

Min-Heap

- A rooted-tree structure satisfying the heap property
- If u is parent of v, then key(u) < key(v)
- Uses a complete binary tree (binary heap)
- Every node has a key smaller than both its children
- Root always contains the smallest element
- Operations:
 - \blacksquare $\mathcal{H} \leftarrow \text{INITIALIZE}()$
 - INSERT (\mathcal{H}, v, k)
 - $\mathbf{v} \leftarrow \text{EXTRACT-MIN}(\mathcal{H})$
 - DELETE(\mathcal{H}, v)
 - DECREASE-KEY (\mathcal{H}, v, k')

Prim's Algorithm: Heap based Implementation

- Store information at vertices (target of many edges)
- Key at vertices is weight of lightest edge incident on it
- Find smallest vertex by key
- Easy to update keys, traverse neighbors of new vertex in *R*

- Store all vertices in \overline{R} in a heap ${\mathcal H}$ with keys
- Initialize \mathcal{H} with V, key of s is 0 for others ∞
- Save pointers (location in heap) to each vertex
- $v \leftarrow \text{EXTRACT-MIN}(\mathcal{H})$ to add to R
- Traverse N(v) to update keys of neighbors in \overline{R}

Prim's Algorithm: Heap based Implementation

Algorithm Prim's Algorithm, G = (V, E, w)

```
R \leftarrow s. T \leftarrow \emptyset
for v \in V do
   v.key \leftarrow \infty
   prev(v) \leftarrow null \triangleright keeps the other end of min crossing edge incident on v
\mathcal{H} \leftarrow \text{INITIALIZE}(V, keys)
DECREASE-KEY(\mathcal{H}, s, 0)
while R \neq V do
   v \leftarrow \text{EXTRACT-MIN}(\mathcal{H})
   T \leftarrow T \cup \{(v, prev(v))\}
   R \leftarrow R \cup \{v\}
   for z \in N(v) do
      if z.key > w(vz) then
          DECREASE-KEY(\mathcal{H}, z, w(vz))
          prev(z) \leftarrow v
```

Prim's Algorithm: Heap based Implementation

- In total there are n EXTRACT-MIN operations
- On extracting v, there are O(deg(v)) DECREASE-KEY operations
- Each EXTRACT-MIN takes $O(\log n)$ time
- **Each** DECREASE-KEY takes $O(\log n)$ time
- Total runtime $n \log n + m \log n = (n + m) \log n$