Minimum Spanning Tree

- Minimum Spanning Tree
- Prim's Algorithm for MST
- Cuts in Graphs
- Correctness and Optimality of Prim's Algorithm
- Runtime
 - Basic Implementation
 - Vertex-Centric Implementation
 - Heap Based Implementation

Imdad ullah Khan

Prim's Algorithm

Input: A weighted graph G = (V, E, w), $w : E \to \mathbb{R}$ **Output:** A spanning tree of G with minimum total weight

The Prim's algorithm

- Maintains a set $R \subset V$ and a tree T spanning vertices in R
- Initially $R = \{s\}$, an arbitrary vertex and $T = \emptyset$
- Grow R by adding one vertex v in every iteration
- Grow T by adding an edge connecting v to some vertex in current
- V(T) = R (vertices spanned by T)
- Select a minimum crossing edge from R to \overline{R}

$$\underset{e=(u,v),u\in R,v\notin R}{\arg\min}w(e)$$

Add v to R and e to T

Prim's Algorithm

$$R \leftarrow \{s\} \qquad \qquad \triangleright s \in V \text{ an arbitrary vertex} \\ T \leftarrow \emptyset \qquad \qquad \triangleright \text{ Begin with an empty tree} \\ \text{while } R \neq V \text{ do} \\ \text{Get } e = (u, v), \ u \in R, v \notin R \text{ with minimum } w(uv) \\ T \leftarrow T \cup \{e\} \\ R \leftarrow R \cup \{v\} \end{cases}$$

A cut in G is a subset $S \subset V$

- Denoted as $[S, \overline{S}]$, $S = \emptyset$ and S = V are trivial cuts
- An edge (u, v) is crossing the cut $[S, \overline{S}]$, if $u \in S$ and $v \in \overline{S}$
- Empty Cut Lemma:
 - A graph G is disconnected iff it has a cut with no crossing edge
- Double Crossing Lemma
 - If a cycle crosses a cut, then it has to cross at least twice
- Lonely Crossing Lemma
 - If e is the only edge crossing a cut $[S, \overline{S}]$, then it is not in any cycle
- The Blue Rule
 - If an edge $e \in E$ is the lightest edge crossing some cut $[S, \overline{S}]$, then e belongs to the MST of G

Prim's Algorithm: Correctness and Optimality

AlgorithmPrim's Algorithm for MST in G = (V, E, w) $R \leftarrow \{s\}$ $\triangleright s \in V$ an arbitrary vertex $T \leftarrow \emptyset$ \triangleright Begin with an empty treewhile $R \neq V$ doGet $e = (u, v), u \in R, v \notin R$ with minimum w(uv) $T \leftarrow T \cup \{e\}$ $R \leftarrow R \cup \{v\}$

Correctness: *T* is a spanning tree of *G*

- T is a subgraph of G
- T is connected
- T has no cycle
- T is spanning

Optimality: *T* is the minimum spanning tree of *G*

Prim's Algorithm: Correctness and Optimality

Correctness:

T is a spanning tree of G

After every iteration *i*, *T* is a spanning tree of $G|_R$

Proof: by induction on |R| (iteration *i*)

- $|R| = |\{s\}| = 1$, and $T = \emptyset$ is a spanning tree of $\{s\}$
- If T spans R, |R| = i, then in the next iteration, we add a vertex to R with an edge connecting it to some vertex in R, hence T is a spanning tree of $G|_R$
- T has at most n-1 edges (max number of iterations)
- T has at least n-1 edges
- If we can't add an edge from $R \neq V$, then $[R, \overline{R}]$ is an empty cut
- Every time we add one edge from $[R, \overline{R}]$ so T has no cycle

Prim's Algorithm: Correctness and Optimality

Optimality: *T* is the minimum spanning tree of *G*

Proof follows from the cut property

If an edge $e \in E$ is the lightest edge crossing some cut $[S, \overline{S}]$, then e belongs to the MST of G

- In every iteration we added the lightest edge crossing the cut $[R, \overline{R}]$
- The blue rule guarantees this to be part of the MST
- Hence, by the blue rule, the output T is an optimal spanning tree