Algorithms

Minimum Spanning Tree

- Minimum Spanning Tree
- Prim's Algorithm for MST
- Cuts in Graphs
- Correctness and Optimality of Prim's Algorithm
- Runtime
- Basic Implementation

■ Vertex-Centric Implementation
■ Heap Based Implementation

Imdad ullah Khan

Cuts in Graphs

■ Cuts in graphs are useful structures, helps analyzing MST algorithm
■ We will discuss it in network flows, complexity, randomized algorithms

A cut in G is a subset $S \subset V$

- Denoted as $[S, \bar{S}]$
$\triangleright S=\emptyset$ and $S=V$ are trivial cuts, we assume that $\emptyset \neq S \neq V$
- A graph on n vertices has 2^{n} cuts
- An edge (u, v) is crossing the cut $[S, \bar{S}], \quad$ if $u \in S$ and $v \in \bar{S}$

Empty Cut Lemma

A graph G is disconnected iff it has a cut with no crossing edge (empty cut)

Proof: if part

- Let $[S, \bar{S}]$ be an empty cut

■ Let $u \in S$ and $v \in \bar{S}$
■ No crossing edge implies no path between u and v

Empty Cut Lemma

A graph G is disconnected iff it has a cut with no crossing edge (empty cut)

Proof: only if part
■ Let u and v be disconnected

- Let $S=R(u)$ (vertices reachable from u)
$\triangleright S$ is the connected component containing u
- No edge crosses the cut $[S, \bar{S}]$
- Otherwise the endpoint of crossing edge must be in S

Double and Lonely Crossing Lemma

If a cycle crosses a cut, then it has to cross at least twice
A edge-subset (subgraph) crossing a cut means there is an edge crossing the cut

- A cycle starting in S once reaches \bar{S} must have another edge to come back to S
- Actually any cycle must cross a cut an even number times

If e is the only edge crossing a cut $[S, \bar{S}]$, then it is not in any cycle

The cut property (Blue Rule)

If an edge $e \in E$ is the lightest edge crossing some cut $[S, \bar{S}]$, then e belongs to the MST of G

This statement assume edge weights are unique. More generally,

If an edge $e \in E$ is a lightest edge crossing some cut $[S, \bar{S}]$, then e belongs to some MST of G

Proof of the cut property (blue rule)

If an edge $e \in E$ is the lightest edge crossing some cut $[S, \bar{S}]$, then e belongs to the MST of G

Proof by contradiction:

■ Let T^{*} be the "MST" of G

- Let e be lightest edge across a cut $[S, \bar{S}]$
- Suppose e $\notin T^{*}$
- There must some edge $f \in T^{*}$ across $[S, \bar{S}]$
- \because otherwise T^{*} is not connected, hence not a tree

■ Exchange e with $f \in T^{*}$ to get T^{\prime}
■ $w\left(T^{\prime}\right) \leq w\left(T^{*}\right) \quad$ as $\quad w(e)<w(f)$

- Is T^{\prime} a spanning tree?

Proof of the cut property (blue rule)

If an edge $e \in E$ is the lightest edge crossing some cut $[S, \bar{S}]$, then e belongs to the MST of G

Proof by contradiction:

■ Let T^{*} be the "MST" of G

- Let e be lightest edge across a cut $[S, \bar{S}]$
- Suppose e $\notin T^{*}$
- There must some edge $f \in T^{*}$ across $[S, \bar{S}]$

■ Exchange e with $f \in T^{*}$ to get $T^{\prime}, w\left(T^{\prime}\right) \leq w\left(T^{*}\right) \quad$ as $\quad w(e)<w(f)$

- Is T^{\prime} a spanning tree?

Proof of the cut property (blue rule)

If an edge $e \in E$ is the lightest edge crossing some cut $[S, \bar{S}]$, then e belongs to the MST of G

Proof by contradiction:

■ Let T^{*} be the "MST" of G

- Let e be lightest edge across a cut $[S, \bar{S}]$

■ Suppose $e \notin T^{*} \Longrightarrow$ there must some edge $f \in T^{*}$ across $[S, \bar{S}]$

- Exchange e with $f \in T^{*}$ to get $T^{\prime}, w\left(T^{\prime}\right) \leq w\left(T^{*}\right)$ as $w(e)<w(f)$
- Replacing an arbitrary heavier crossing edge by e does not work

Proof of the cut property (blue rule)

If an edge $e \in E$ is the lightest edge crossing some cut $[S, \bar{S}]$, then e belongs to the MST of G

Proof by contradiction:

■ Let T^{*} be the "MST" of G

- Let e be lightest edge across a cut $[S, \bar{S}]$

■ Suppose $e \notin T^{*} \Longrightarrow$ there must some edge $f \in T^{*}$ across $[S, \bar{S}]$

- Exchange e with $f \in T^{*}$ to get $T^{\prime}, w\left(T^{\prime}\right) \leq w\left(T^{*}\right)$ as $w(e)<w(f)$
- Replacing an arbitrary heavier crossing edge by e does not work
- Which edge should e replace?

Proof of the cut property (blue rule)

If an edge $e \in E$ is the lightest edge crossing some cut $[S, \bar{S}]$, then e belongs to the MST of G

Proof by contradiction:

- Let e be lightest edge across a cut $[S, \bar{S}]$
- Suppose e $\notin T^{*}$, the MST of G
- Add e to T^{*}
- It must create a cycle
- The cycle must cross the cut at least twice
\triangleright (a tree is maximally acyclic)
\triangleright (double crossing lemma)
- Let e^{\prime} be another crossing edge on that cycle
- $T^{\prime}=T^{*} \backslash\left\{e^{\prime}\right\} \cup\{e\}$ and $w\left(T^{\prime}\right)<w\left(T^{*}\right)$

