Minimum Spanning Tree

- Minimum Spanning Tree
- Prim's Algorithm for MST
- Cuts in Graphs
- Correctness and Optimality of Prim's Algorithm
- Runtime
 - Basic Implementation
 - Vertex-Centric Implementation
 - Heap Based Implementation

Imdad ullah Khan

Cuts in Graphs

Cuts in graphs are useful structures, helps analyzing MST algorithmWe will discuss it in network flows, complexity, randomized algorithms

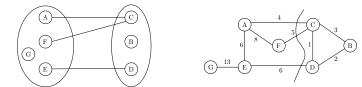
A cut in G is a subset $S \subset V$

• Denoted as $[S, \overline{S}]$

 \triangleright $S = \emptyset$ and S = V are trivial cuts, we assume that $\emptyset \neq S \neq V$

• A graph on *n* vertices has 2^n cuts

• An edge (u, v) is crossing the cut $[S, \overline{S}]$, if $u \in S$ and $v \in \overline{S}$



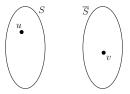
Empty Cut Lemma

A graph G is disconnected iff it has a cut with no crossing edge (empty cut)

Proof: if part

- Let $[S, \overline{S}]$ be an empty cut
- Let $u \in S$ and $v \in \overline{S}$

• No crossing edge implies no path between u and v



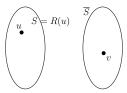
A graph G is disconnected iff it has a cut with no crossing edge (empty cut)

Proof: only if part

- Let u and v be disconnected
- Let S = R(u) (vertices reachable from u)

 \triangleright *S* is the connected component containing *u*

- No edge crosses the cut $[S, \overline{S}]$
- Otherwise the endpoint of crossing edge must be in S

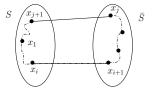


Double and Lonely Crossing Lemma

If a cycle crosses a cut, then it has to cross at least twice

A edge-subset (subgraph) crossing a cut means there is an edge crossing the cut

- A cycle starting in S once reaches S must have another edge to come back to S
- Actually any cycle must cross a cut an even number times



If e is the only edge crossing a cut $[S, \overline{S}]$, then it is not in any cycle

If an edge $e \in E$ is the lightest edge crossing some cut $[S, \overline{S}]$, then e belongs to the MST of G

This statement assume edge weights are unique. More generally,

If an edge $e \in E$ is a lightest edge crossing some cut $[S, \overline{S}]$, then e belongs to some MST of G

If an edge $e \in E$ is the lightest edge crossing some cut $[S, \overline{S}]$, then e belongs to the MST of G

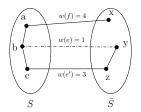
Proof by contradiction:

- Let T^* be the "MST" of G
- Let *e* be lightest edge across a cut $[S, \overline{S}]$
- Suppose $e \notin T^*$
- There must some edge $f \in T^*$ across $[S, \overline{S}]$
 - \therefore otherwise T^* is not connected, hence not a tree
- Exchange e with $f \in T^*$ to get T'
- $w(T') \le w(T^*)$ as w(e) < w(f)
- Is T' a spanning tree?

If an edge $e \in E$ is the lightest edge crossing some cut $[S, \overline{S}]$, then e belongs to the MST of G

Proof by contradiction:

- Let T^* be the "MST" of G
- Let *e* be lightest edge across a cut $[S, \overline{S}]$
- Suppose $e \notin T^*$
- There must some edge $f \in T^*$ across $[S, \overline{S}]$
- Exchange e with $f \in T^*$ to get T', $w(T') \le w(T^*)$ as w(e) < w(f)
- Is T' a spanning tree?

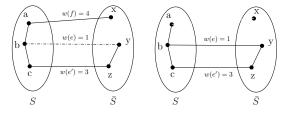


If an edge $e \in E$ is the lightest edge crossing some cut $[S, \overline{S}]$, then e belongs to the MST of G

Proof by contradiction:

- Let T^* be the "MST" of G
- Let *e* be lightest edge across a cut $[S, \overline{S}]$
- Suppose $e \notin T^* \implies$ there must some edge $f \in T^*$ across $[S, \overline{S}]$
- Exchange e with $f \in T^*$ to get T', $w(T') \le w(T^*)$ as w(e) < w(f)

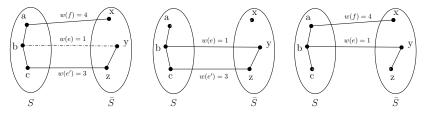
Replacing an arbitrary heavier crossing edge by e does not work



If an edge $e \in E$ is the lightest edge crossing some cut $[S, \overline{S}]$, then e belongs to the MST of G

Proof by contradiction:

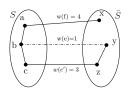
- Let T^* be the "MST" of G
- Let *e* be lightest edge across a cut $[S, \overline{S}]$
- Suppose $e \notin T^* \implies$ there must some edge $f \in T^*$ across $[S, \overline{S}]$
- Exchange e with $f \in T^*$ to get T', $w(T') \le w(T^*)$ as w(e) < w(f)
- Replacing an arbitrary heavier crossing edge by e does not work
- Which edge should *e* replace?

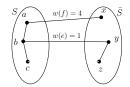


If an edge $e \in E$ is the lightest edge crossing some cut $[S, \overline{S}]$, then e belongs to the MST of G

Proof by contradiction:

- Let *e* be lightest edge across a cut $[S, \overline{S}]$
- Suppose $e \notin T^*$, the MST of *G*
- Add e to T*
- It must create a cycle
- The cycle must cross the cut at least twice
- Let *e*′ be another crossing edge on that cycle
- $T' = T^* \setminus \{e'\} \cup \{e\}$ and $w(T') < w(T^*)$





▷ (a tree is maximally acyclic)

▷ (double crossing lemma)