Minimum Spanning Tree

- Minimum Spanning Tree
- Prim's Algorithm for MST
- Cuts in Graphs
- Correctness and Optimality of Prim's Algorithm
- Runtime
 - Basic Implementation
 - Vertex-Centric Implementation
 - Heap Based Implementation

Imdad ullah Khan

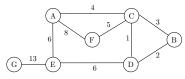
Minimum Spanning Tree: Review

- T = (V', E') is a spanning tree of G = (V, E) if
 - T is a spanning subgraph of G
 - *T* is a tree
- Weight of a tree T is sum of weights of its edges $w(T) = \sum_{e \in T} w(e)$
- A tree is a connected graph with no cycles
- A tree on n vertices has n-1 edges
- A MST is a spanning tree with minimum weight

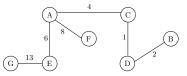
Computing MST is a classic optimization problem with many applications in graph analysis, combinatorial optimization, network formation,...

Minimum Spanning Tree Problem

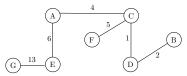
Input: A weighted graph G = (V, E, w), $w : E \to \mathbb{R}$ **Output:** A spanning tree of G with minimum total weight



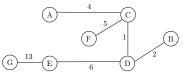
A weighted graph G



A spanning tree of G with weight 34



An MST of G with weight 31



An MST of G with weight 31

MST does not have to be unique

MST Algorithms

Input: An undirected weighted graph G = (V, E, w), $w : E \to \mathbb{R}$ **Output:** A spanning tree of G with minimum total weight

We discuss two greedy algorithms to find MST in a graph

- Prim's Algorithm (1957) [also Dijkstra '59, Jarnik '30]
- Kruskal's Algorithm (1956)
- We make the following assumptions
 - **1** Input graph G is connected
 - Otherwise there is no spanning tree
 - Easy to check in preprocessing (e.g., BFS or DFS).
 - For disconnected graphs can find minimum spanning forest

2 Edge weights are distinct

- Otherwise there can be more than one MSTs
- Algorithms remain correct with arbitrarily breaking ties
- Analysis is slightly complicated

Prim's Algorithm

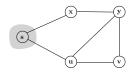
• Maintains a set $R \subset V$ and a tree T spanning vertices in R

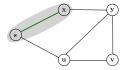
•
$$V(T) = R$$
 \triangleright vertices spanned by T

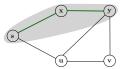
- Grow R by adding one vertex v in every iteration
- Grow T by adding an edge connecting v to some vertex in current R
- Initially $R = \{s\}$, an arbitrary vertex and $T = \emptyset$
- Select a minimum crossing edge from R to R \triangleright (greedy criteria)

$$\underset{e=(u,v),u\in R,v\notin R}{\operatorname{arg\,min}}w(e)$$

Add v to R and e to T



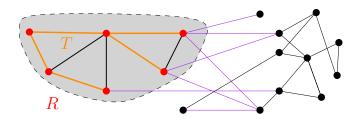




Prim's Algorithm

Algorithm Prim's Algorithm for MST in G = (V, E, w)

$$R \leftarrow \{s\}$$
 $\triangleright s \in V$ an arbitrary vertex $T \leftarrow \emptyset$ \triangleright Begin with an empty treewhile $R \neq V$ doGet $e = (u, v), u \in R, v \notin R$ with minimum $w(uv)$ $T \leftarrow T \cup \{e\}$ $R \leftarrow R \cup \{v\}$



Prim's Algorithm: Example

