
Algorithms

Minimum Spanning Tree

Minimum Spanning Tree

Prim’s Algorithm for MST

Cuts in Graphs

Correctness and Optimality of Prim’s Algorithm

Runtime
Basic Implementation

Vertex-Centric Implementation

Heap Based Implementation

Imdad ullah Khan

Imdad ullah Khan (LUMS) Prim’s Algorithm 1 / 1



Minimum Spanning Tree: Review

T = (V ′,E ′) is a spanning tree of G = (V ,E ) if

T is a spanning subgraph of G

T is a tree

Weight of a tree T is sum of weights of its edges w(T ) =
∑
e∈T

w(e)

A tree is a connected graph with no cycles

A tree on n vertices has n − 1 edges

A MST is a spanning tree with minimum weight

Computing MST is a classic optimization problem with many applications
in graph analysis, combinatorial optimization, network formation,..

Imdad ullah Khan (LUMS) Prim’s Algorithm 2 / 1



Minimum Spanning Tree Problem

Input: A weighted graph G = (V ,E ,w), w : E → R
Output: A spanning tree of G with minimum total weight

E

A

F

D

C

B

3

2

1

4

8
5

6

6G
13

E

A

F

D

C

B

3

2

1

4

8
5

6

6G
13

E

A

F

D

C

B

2

1

4

5

6
G

13
E

A

F

D

C

B

2

1

4

5

6

G
13

A weighted graph G A spanning tree of G with weight 34

An MST of G with weight 31 An MST of G with weight 31

MST does not have to be unique

Imdad ullah Khan (LUMS) Prim’s Algorithm 3 / 1



MST Algorithms

Input: An undirected weighted graph G = (V ,E ,w), w : E → R
Output: A spanning tree of G with minimum total weight

We discuss two greedy algorithms to find MST in a graph

Prim’s Algorithm (1957) [also Dijkstra ‘59, Jarnik ‘30]

Kruskal’s Algorithm (1956)

We make the following assumptions

1 Input graph G is connected

Otherwise there is no spanning tree

Easy to check in preprocessing (e.g., bfs or dfs).

For disconnected graphs can find minimum spanning forest

2 Edge weights are distinct

Otherwise there can be more than one MSTs

Algorithms remain correct with arbitrarily breaking ties

Analysis is slightly complicated

Imdad ullah Khan (LUMS) Prim’s Algorithm 4 / 1



Prim’s Algorithm

Maintains a set R ⊂ V and a tree T spanning vertices in R

V (T ) = R ▷ vertices spanned by T

Grow R by adding one vertex v in every iteration

Grow T by adding an edge connecting v to some vertex in current R

Initially R = {s}, an arbitrary vertex and T = ∅
Select a minimum crossing edge from R to R ▷ (greedy criteria)

argmin
e=(u,v),u∈R,v /∈R

w(e)

Add v to R and e to T

x

u v

y

s

x

u v

y

s

x

u v

y

s

Imdad ullah Khan (LUMS) Prim’s Algorithm 5 / 1



Prim’s Algorithm

Algorithm Prim’s Algorithm for MST in G = (V ,E ,w)

R ← {s} ▷ s ∈ V an arbitrary vertex
T ← ∅ ▷ Begin with an empty tree
while R ̸= V do
Get e = (u, v), u ∈ R, v /∈ R with minimum w(uv)
T ← T ∪ {e}
R ← R ∪ {v}

R

T

Imdad ullah Khan (LUMS) Prim’s Algorithm 6 / 1



Prim’s Algorithm: Example

E

A

F

D

C

B

3

2

1

4

8
5

6

6G
13

E

A

F

D

C

B

3

2

1

4

8
5

6

6G
13

E

A

F

D

C

B

3

2

1

4

8
5

6

6G
13

E

A

F

D

C

B

3

2

1

4

8
5

6

6G
13

E

A

F

D

C

B

3

2

1

4

8
5

6

6
G

13
E

A

F

D

C

B

3

2

1

4

8
5

6

6
G

13
E

A

F

D

C

B

3

2

1

4

8
5

6

6
G

13

Imdad ullah Khan (LUMS) Prim’s Algorithm 7 / 1


