
Algorithms

Single Source Shortest Path

Weighted Graphs and Shortest Paths

Dijkstra Algorithm

Proof of Correctness

Runtime

Basic Implementation

Vertex-Centric Implementation

Heap Based Implementation

Imdad ullah Khan

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 1 / 8



Dijkstra Algorithm: Runtime

Algorithm Dijkstra’s Algorithm for Shortest Paths from s to all vertices

d [1 . . . n]← [∞ . . .∞]
prev [1 . . . n]← [null . . . null ]
d [s]← 0
R ← {s}
while R ̸= V do
Select e = (u, v), u ∈ R, v /∈ R, with minimum d [u] + w(uv)
R ← R ∪ {v}
d [v ]← d [u] + w(uv)
prev [v ]← u

Rs

While loop runs for O(n) iterations

Find minimum score edge takes O(m) times

Total runtime O(nm)

Repeatedly finding minimum is expensive

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 2 / 8



Dijkstra Algorithm - Vertex Centric

Store information at vertices (target of many edges)

Key at vertices is length of current best single edge extension

Find closest vertex to s by key

d

0

8

7

5

∞

∞

∞

∞

1

2

3
1

4

5

6

key = 8 + 1

key = min{8 + 2, 5 + 3}

key = 5 + 1

key = min{5 + 4, 7 + 5}

key = 7 + 6

key = ∞

R R̄
a

b

c

s 1

3

s

a

b

c

d

e

f

g

Key is easy to update, just traverse neighbors of new vertex in R

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 3 / 8



Dijkstra Algorithm - Vertex Centric - Runtime

Algorithm Dijkstra’s Algorithm for distances from s to all vertices

d [1 . . . n]← [∞ . . .∞]
d [s]← 0
while R ̸= V do
Select v ∈ R with minimum d [v ]
R ← R ∪ {v}
for each z ∈ N(v) ∩ R do

if d [z ] > d [v ] + w(vz) then

d [z ]← d [v ] + w(vz)

Rs

While loop runs for O(n) iterations

Find minimum score vertex takes O(n) time

Need to update only neighbors of added vertex

Total runtime O(n · n +m)

Better than last one, esp. for dense graphs

Repeatedly finding minimum key is expensive

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 4 / 8



Dijkstra Algorithm - Heap Implementation

Recall the Priority Queue adt and its Heap implementation

Operations:

H ← initialize() ▷ O(n)

insert(H, v , k) ▷ O(log n)

v ← extract-min(H) ▷ O(log n)

delete(H, v) ▷ O(log n)

decrease-key(H, v , k ′) ▷ O(log n)

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 5 / 8



Dijkstra Algorithm - Heap Implementation

Store information at vertices (target of many edges)

Key at vertices is length of current best single edge extension

Find closest vertex to s by key

Key is easy to update, traverse neighbors of new vertex in R

d

0

8

7

5

∞

∞

∞

∞

1

2

3
1

4

5

6

key = 8 + 1

key = min{8 + 2, 5 + 3}

key = 5 + 1

key = min{5 + 4, 7 + 5}

key = 7 + 6

key = ∞

R R̄
a

b

c

s 1

3

s

a

b

c

d

e

f

g

Store all vertices in R in a heap H with keys

Initialize H with V , key of s is 0 for others ∞
Save pointers (location in heap) to each vertex

v ← extract-min(H) to add to R

Traverse N(v) to update keys of neighbors of v in R

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 6 / 8



Dijkstra Algorithm - Heap Implementation

Algorithm Dijkstra’s Algorithm for distances from s to all vertices

d [1 . . . n]← [∞ . . .∞]

d [s]← 0

H ← initialize(V , d) ▷ make a heap with all vertices and keys as d [·]
while R ̸= V do
v ← extract-min(H)
for each z ∈ N(v) ∩ R do

if d [z ] > d [v ] + w(vz) then

decrease-key(H, z , d [v ] + w(vz))

R ← R ∪ {v}

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 7 / 8



Dijkstra Algorithm - Heap Implementation: Runtime

In total there are n extract-min operations

On extracting v , there are O(deg(v)) decrease-key operations

Each extract-min takes O(log n) time

Each decrease-key takes O(log n) time

Total runtime n log n +m log n = (n +m) log n

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 8 / 8


