
Algorithms

Single Source Shortest Path

Weighted Graphs and Shortest Paths

Dijkstra Algorithm

Proof of Correctness

Runtime

Basic Implementation

Vertex-Centric Implementation

Heap Based Implementation

Imdad ullah Khan

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 1 / 27



Shortest Paths

Weight of a path in weighted graphs is sum of weights of its edges

C(p2) = 4 + 5 + 3 + 3

C(p3) = 9 + 14

C(p1) = 3 + 4 + 8

F

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BAS

GD

EC

Three S −G paths

Shortest path from s to t is a path of smallest weight

Distance from s to t, d(s, t): weight of the shortest s − t path

There can be multiple shortest paths

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 2 / 27



Shortest Path Problems

1 Shortest s − t path:

Given G = (V ,E ,w) and s, t ∈ V , find a shortest path from s to t

For an undirected graph, it will be a path between s and t

Unweighted graphs are weighted graphs with all edge weights = 1

Shortest path is not unique, any path with minimum weight will work

2 Single source shortest paths (sssp):

Given G = (V ,E ,w) and s ∈ V , find shortest paths from s to all t ∈ V

Problems of undirected and unweighted graphs are covered as above

It includes the first problem

We focus on sssp

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 3 / 27



SSSP Problem

Input: A weighted graph G and a source vertex s ∈ V
Output: Shortest paths from s to all vertices v ∈ V

For unweighted graphs (unit weights) bfs from s will work

▷ bfs running time: O(n +m)

For weighted graph replace each edge e by a directed path of w(e) unit
weight edges

5

1

2

6

3 24

D

EC

B

A 2

Dummy Vertex

1 1
B D B D

What if weights are not integers or are negative

Blows up size of the graph a lot

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 4 / 27



Dijkstra Algorithm

Input: A weighted graph G and a source vertex s ∈ V
Output: Shortest paths from s to all vertices v ∈ V

Dijkstra’s algorithm solves sssp for both directed and undirected graphs

Assumptions:

1 All vertices are reachable from s

Otherwise there is no shortest path (distance =∞)

Easy to get R(s) in preprocessing (e.g., bfs or dfs)

2 All edge weights are non-negative

Bellman-Ford algorithm deals with negative weights

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 5 / 27



Dijkstra Algorithm

First step: only find distances d [1 . . . n] d [i ] = d(s, vi )

d [s] = 0

Maintains a set R ⊂ V (known region), d [x ∈ R] is finalized

Initially R = {s} and iteratively add one vertex to R

d [1 . . . n]← [∞ . . .∞]
d [s]← 0
R ← {s}
while R ̸= V do
Select v ∈ R
R ← R ∪ {v}
d [v ]← d(s, v)

s

x

u

y

v

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 6 / 27



Dijkstra Algorithm

First step: only find distances d [1 . . . n] d [i ] = d(s, vi )

d [s] = 0

Maintains a set R ⊂ V (known region), d [x ∈ R] is finalized

Initially R = {s} and iteratively add one vertex to R

d [1 . . . n]← [∞ . . .∞]
d [s]← 0
R ← {s}
while R ̸= V do
Select v ∈ R
R ← R ∪ {v}
d [v ]← d(s, v)

s

x

u

y

v

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 7 / 27



Dijkstra Algorithm

First step: only find distances d [1 . . . n] d [i ] = d(s, vi )

d [s] = 0

Maintains a set R ⊂ V (known region), d [x ∈ R] is finalized

Initially R = {s} and iteratively add one vertex to R

d [1 . . . n]← [∞ . . .∞]
d [s]← 0
R ← {s}
while R ̸= V do
Select v ∈ R
R ← R ∪ {v}
d [v ]← d(s, v)

s

x

u

y

v

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 8 / 27



Dijkstra Algorithm

First step: only find distances d [1 . . . n] d [i ] = d(s, vi )

d [s] = 0

Maintains a set R ⊂ V (known region), d [x ∈ R] is finalized

Initially R = {s} and iteratively add one vertex to R

d [1 . . . n]← [∞ . . .∞]
d [s]← 0
R ← {s}
while R ̸= V do
Select v ∈ R
R ← R ∪ {v}
d [v ]← d(s, v)

s

x

u

y

v

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 9 / 27



Dijkstra Algorithm

First step: only find distances d [1 . . . n] d [i ] = d(s, vi )

d [s] = 0

Maintains a set R ⊂ V (known region), d [x ∈ R] is finalized

Initially R = {s} and iteratively add one vertex to R

d [1 . . . n]← [∞ . . .∞]
d [s]← 0
R ← {s}
while R ̸= V do
Select v ∈ R
R ← R ∪ {v}
d [v ]← d(s, v)

s

x

u

y

v

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 10 / 27



Dijkstra Algorithm

First step: only find distances d [1 . . . n] d [i ] = d(s, vi )

d [s] = 0

Maintains a set R ⊂ V (known region), d [x ∈ R] is finalized

Initially R = {s} and iteratively add one vertex to R

d [1 . . . n]← [∞ . . .∞]
d [s]← 0
R ← {s}
while R ̸= V do
Select v ∈ R
R ← R ∪ {v}
d [v ]← d(s, v)

s

x

u

y

v

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 11 / 27



Dijkstra Algorithm: Greedy Criteria

s

x

u

y

v

d [1 . . . n]← [∞ . . .∞]
d [s]← 0 R ← {s}
while R ̸= V do

Select v ∈ R
R ← R ∪ {v}
d [v ]← d(s, v)

Which vertex from R to add to R?

The vertex v ∈ R that is closest to s

Such a v must be at the “frontier” of R

Rs

s u v

∈R︷ ︸︸ ︷
Shortest path to v ∈ R, closest to s

w(uv) ≥ 0

Let v ∈ R be the closest to s and let a shortest s − v path be s, . . . , u, v

w(uv) ≥ 0 =⇒ d(s, u) ≤ d(s, v) =⇒ u is closer to s than v =⇒ u ∈ R

Otherwise we get contradiction to v being closest to s in R

This implies that v is only one edge away from R, i.e. (u, v)

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 12 / 27



Dijkstra Algorithm: Greedy Criteria

s

x

u

y

v

d [1 . . . n]← [∞ . . .∞]
d [s]← 0 R ← {s}
while R ̸= V do

Select v ∈ R
R ← R ∪ {v}
d [v ]← d(s, v)

Which vertex from R to add to R?

The vertex v ∈ R that is closest to s

Such a v must be at the “frontier” of R

Rs

s u v

∈R︷ ︸︸ ︷
Shortest path to v ∈ R, closest to s

w(uv) ≥ 0

Let v ∈ R be the closest to s and let a shortest s − v path be s, . . . , u, v

w(uv) ≥ 0 =⇒ d(s, u) ≤ d(s, v) =⇒ u is closer to s than v =⇒ u ∈ R

Otherwise we get contradiction to v being closest to s in R

This implies that v is only one edge away from R, i.e. (u, v)

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 13 / 27



Dijkstra Algorithm: Greedy Criteria

s

x

u

y

v

d [1 . . . n]← [∞ . . .∞]
d [s]← 0 R ← {s}
while R ̸= V do

Select v ∈ R
R ← R ∪ {v}
d [v ]← d(s, v)

Which vertex from R to add to R?

The vertex v ∈ R that is closest to s

Such a v must be at the “frontier” of R

Rs

s u v

∈R︷ ︸︸ ︷
Shortest path to v ∈ R, closest to s

w(uv) ≥ 0

Let v ∈ R be the closest to s and let a shortest s − v path be s, . . . , u, v

w(uv) ≥ 0 =⇒ d(s, u) ≤ d(s, v) =⇒ u is closer to s than v =⇒ u ∈ R

Otherwise we get contradiction to v being closest to s in R

This implies that v is only one edge away from R, i.e. (u, v)

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 14 / 27



Dijkstra Algorithm: Greedy Criteria

s

x

u

y

v

d [1 . . . n]← [∞ . . .∞]
d [s]← 0 R ← {s}
while R ̸= V do

Select v ∈ R
R ← R ∪ {v}
d [v ]← d(s, v)

Which vertex from R to add to R?

The vertex v ∈ R that is closest to s

Such a v must be at the “frontier” of R

Rs

s u v

∈R︷ ︸︸ ︷
Shortest path to v ∈ R, closest to s

w(uv) ≥ 0

Let v ∈ R be the closest to s and let a shortest s − v path be s, . . . , u, v

w(uv) ≥ 0 =⇒ d(s, u) ≤ d(s, v) =⇒ u is closer to s than v =⇒ u ∈ R

Otherwise we get contradiction to v being closest to s in R

This implies that v is only one edge away from R, i.e. (u, v)

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 15 / 27



Dijkstra Algorithm: Greedy Criteria

s

x

u

y

v

d [1 . . . n]← [∞ . . .∞]
d [s]← 0 R ← {s}
while R ̸= V do

Select v ∈ R
R ← R ∪ {v}
d [v ]← d(s, v)

Which vertex from R to add to R?

The vertex v ∈ R that is closest to s

Such a v must be at the “frontier” of R

Rs

Restrict search to “single edge extensions” of paths to u ∈ R

Dijkstra assigns a score to each crossing edge

score(u, v) = d [u] + w(uv) for (u, v) ∈ E , u ∈ R, v /∈ R

Add a frontier vertex adjacent through minimum scoring edge

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 16 / 27



Dijkstra Algorithm

Algorithm Dijkstra’s Algorithm for distances from s to all vertices

d [1 . . . n]← [∞ . . .∞]

d [s]← 0 R ← {s}
while R ̸= V do

Select e = (u, v), u ∈ R, v /∈ R, with minimum d [u] + w(uv)

R ← R ∪ {v}
d [v ]← d [u] + w(uv)

S

C

D

E F

G

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BA

d

S

A

B

C

D

E

F

G

∞

∞

∞

∞

∞

∞

∞

∞

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 17 / 27



Dijkstra Algorithm

Algorithm Dijkstra’s Algorithm for distances from s to all vertices

d [1 . . . n]← [∞ . . .∞]

d [s]← 0 R ← {s}
while R ̸= V do

Select e = (u, v), u ∈ R, v /∈ R, with minimum d [u] + w(uv)

R ← R ∪ {v}
d [v ]← d [u] + w(uv)

S

C

D

E F

G

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BA

d

S

A

B

C

D

E

F

G

0

∞

∞

∞

∞

∞

∞

∞

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 18 / 27



Dijkstra Algorithm

Algorithm Dijkstra’s Algorithm for distances from s to all vertices

d [1 . . . n]← [∞ . . .∞]

d [s]← 0 R ← {s}
while R ̸= V do

Select e = (u, v), u ∈ R, v /∈ R, with minimum d [u] + w(uv)

R ← R ∪ {v}
d [v ]← d [u] + w(uv)

S

C

D

E F

G

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BA

d

S

A

B

C

D

E

F

G

0

3

∞

∞

∞

∞

∞

∞

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 19 / 27



Dijkstra Algorithm

Algorithm Dijkstra’s Algorithm for distances from s to all vertices

d [1 . . . n]← [∞ . . .∞]

d [s]← 0 R ← {s}
while R ̸= V do

Select e = (u, v), u ∈ R, v /∈ R, with minimum d [u] + w(uv)

R ← R ∪ {v}
d [v ]← d [u] + w(uv)

S

C

D

E F

G

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BA

d

S

A

B

C

D

E

F

G

0

3

∞

4

∞

∞

∞

∞

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 20 / 27



Dijkstra Algorithm

Algorithm Dijkstra’s Algorithm for distances from s to all vertices

d [1 . . . n]← [∞ . . .∞]

d [s]← 0 R ← {s}
while R ̸= V do

Select e = (u, v), u ∈ R, v /∈ R, with minimum d [u] + w(uv)

R ← R ∪ {v}
d [v ]← d [u] + w(uv)

S

C

D

E F

G

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BA

d

S

A

B

C

D

E

F

G

0

3

7

4

∞

∞

∞

∞

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 21 / 27



Dijkstra Algorithm

Algorithm Dijkstra’s Algorithm for distances from s to all vertices

d [1 . . . n]← [∞ . . .∞]

d [s]← 0 R ← {s}
while R ̸= V do

Select e = (u, v), u ∈ R, v /∈ R, with minimum d [u] + w(uv)

R ← R ∪ {v}
d [v ]← d [u] + w(uv)

S

C

D

E F

G

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BA

d

S

A

B

C

D

E

F

G

0

3

7

4

7

∞

∞

∞

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 22 / 27



Dijkstra Algorithm

Algorithm Dijkstra’s Algorithm for distances from s to all vertices

d [1 . . . n]← [∞ . . .∞]

d [s]← 0 R ← {s}
while R ̸= V do

Select e = (u, v), u ∈ R, v /∈ R, with minimum d [u] + w(uv)

R ← R ∪ {v}
d [v ]← d [u] + w(uv)

S

C

D

E F

G

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BA

d

S

A

B

C

D

E

F

G

0

3

7

4

9

9

∞

∞

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 23 / 27



Dijkstra Algorithm

Algorithm Dijkstra’s Algorithm for distances from s to all vertices

d [1 . . . n]← [∞ . . .∞]

d [s]← 0 R ← {s}
while R ̸= V do

Select e = (u, v), u ∈ R, v /∈ R, with minimum d [u] + w(uv)

R ← R ∪ {v}
d [v ]← d [u] + w(uv)

S

C

D

E F

G

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BA

d

S

A

B

C

D

E

F

G

0

3

7

4

9

9

12

∞

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 24 / 27



Dijkstra Algorithm

Algorithm Dijkstra’s Algorithm for distances from s to all vertices

d [1 . . . n]← [∞ . . .∞]

d [s]← 0 R ← {s}
while R ̸= V do

Select e = (u, v), u ∈ R, v /∈ R, with minimum d [u] + w(uv)

R ← R ∪ {v}
d [v ]← d [u] + w(uv)

S

C

D

E F

G

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BA

d

S

A

B

C

D

E

F

G

0

3

7

4

9

9

12

15

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 25 / 27



Dijkstra Algorithm with paths

Record predecessor relationships (sources of used edges)

Implicitly builds a tree (shortest path tree)

Algorithm Dijkstra’s Algorithm for Shortest Paths from s to all vertices

d [1 . . . n]← [∞ . . .∞]

prev [1 . . . n]← [null . . . null ]

d [s]← 0

R ← {s}
while R ̸= V do

Select e = (u, v), u ∈ R, v /∈ R, with minimum d [u] + w(uv)

R ← R ∪ {v}
d [v ]← d [u] + w(uv)

prev [v ]← u ▷ predecessor is the vertex whose path is single-edge extended

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 26 / 27



Dijkstra Algorithm with paths

Algorithm Dijkstra’s Algorithm for Shortest Paths from s to all vertices

d [1 . . . n]← [∞ . . .∞]
prev [1 . . . n]← [null . . . null ]
d [s]← 0 R ← {s}
while R ̸= V do

Select e = (u, v), u ∈ R, v /∈ R, with minimum d [u] + w(uv)

R ← R ∪ {v}
d [v ]← d [u] + w(uv)

prev [v ]← u ▷ predecessor is the vertex whose path is single-edge extended

S

C

D

E F

G

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BA

d

S

A

B

C

D

E

F

G

0

3

7

4

9

9

12

15

prev

Nil

S

A

S

C

D

E

B

Imdad ullah Khan (LUMS) Dijkstra’s Algorithm 27 / 27


