Algorithms

Single Source Shortest Path

- Weighted Graphs and Shortest Paths

■ Dijkstra Algorithm

- Proof of Correctness
- Runtime
- Basic Implementation
- Vertex-Centric Implementation
- Heap Based Implementation

Imdad ullah Khan

Weighted Graph

Weighted Graphs (digraphs)

- V : Set of vertices

■ E : Set of edges (directed edges)
■ w : cost/weight on each edge. $\quad w: E \rightarrow \mathbb{R}$
\triangleright weights could be lengths, airfare, toll, energy

- Denoted by $G=(V, E, w)$

Weighted Graph Representation

Weighted Adjacency Matrix

	S	A	B	C	D	E	F	G
S	0	3	0	4	9	0	0	0
A	0	0	4	0	0	0	0	0
B	0	0	0	0	0	6	0	8
C	\vdots							
D								
E								
F								
G								

Weighted Adjacency Lists

Weighted Graph

Weighted Graph

Weighted Graph

Weighted Graph

Paths in Graphs

A path in a digraph is a sequence of vertices with no repetition

$$
v_{1}, v_{2}, \ldots, v_{k}
$$

such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$

Length of the path is the number of edges in it

Weight of Paths

Weight or length of a path $p=v_{0}, v_{1}, \ldots, v_{k}$ in weighted graphs is sum of the weights of its edges

$$
C(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

Three $S-G$ paths

$$
\begin{aligned}
& \mathrm{C}\left(\mathrm{p}_{1}\right)=3+4+8 \\
& \mathrm{C}\left(\mathrm{p}_{2}\right)=4+5+3+3 \\
& \mathrm{C}\left(\mathrm{p}_{3}\right)=9+14
\end{aligned}
$$

Unweighted graphs are weighted graphs with unit edge weights

Shortest Paths

Three $S-G$ paths

$$
\begin{aligned}
& \mathrm{C}\left(\mathrm{p}_{1}\right)=3+4+8 \\
& \mathrm{C}\left(\mathrm{p}_{2}\right)=4+5+3+3
\end{aligned}
$$

$$
\mathrm{C}\left(\mathrm{p}_{3}\right)=9+14
$$

Shortest path from s to t is a path of smallest weight
Distance from s to $t, \mathbf{d}(\mathbf{s}, \mathbf{t})$: weight of the shortest $s-t$ path

There can be multiple shortest paths

Shortest Path Problems

1 Shortest $s-t$ path:
Given $G=(V, E, w)$ and $s, t \in V$, find a shortest path from s to t

- For undirected graph, it will be a path between s and t
- Unweighted graphs are weighted graphs with all edge weights $=1$
- Shortest path is not unique, any path with minimum weight will work

2 Single source shortest paths (SSSP):
Given $G=(V, E, w)$ and $s \in V$, find shortest paths from s to all $t \in V$

- Problems of undirected and unweighted graphs are covered as above
- It includes the first problem

We focus on SSSP

