Algorithms

Basic Graph Algorithms

Exploring Graphs

Depth First Search
m DFS Forest - Start and Finish Time

m DAG, Topological Sorting

Strongly Connected Components

m Breadth First Search

Bipartite Graphs
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Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle )

Which ones of the following are DAGs?
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Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle )

m Model precedence constraints (e.g. course pre-requisites)
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Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

m Model dependency constraints (e.g. package dependencies)
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Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

m Clearly precedence or dependency graphs cannot have directed cycles

m Could have undirected cycles
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DFS Forest: Types of Edges

Overlay all edges of a digraph G onto its DFS forest

m Tree edge - Edge used in the DFS (parent to child)

m Back edge - Edge from a node to a non-parent ancestor

m Forward edge - Edge from a node to a non-child descendant

m Cross edge - Edge from a node in one tree to a node in another

Lemma: A digraph G has a directed cycle if and only if the DFS forest of
G has a back edge J

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms 6/19



DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle

source: A node v in a digraph is a source , if deg”(v) =0

sink: A node v in a digraph is a sink, if deg™(v) =0

0 source source a

source
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DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle )
source: A node v in a digraph is a source , if deg(v) =0 )
sink: A node v in a digraph is a sink, if deg™(v) =0 )

Every DAG has a source and a sink )

If no sink exists, then every vertex has out-degree > 1
Start from a vertex, in each step take an unused outgoing edge

[ [ ]
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DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle )
source: A node v in a digraph is a source , if deg(v) =0 )
sink: A node v in a digraph is a sink, if deg™(v) =0 )

Every DAG has a source and a sink )

If no sink exists, then every vertex has out-degree > 1
Start from a vertex, in each step take an unused outgoing edge
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DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle )
source: A node v in a digraph is a source , if deg(v) =0 )
sink: A node v in a digraph is a sink, if deg™(v) =0 )

Every DAG has a source and a sink )

If no sink exists, then every vertex has out-degree > 1
Start from a vertex, in each step take an unused outgoing edge
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DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle )
source: A node v in a digraph is a source , if deg(v) =0 )
sink: A node v in a digraph is a sink, if deg™(v) =0 )

Every DAG has a source and a sink )

If no sink exists, then every vertex has out-degree > 1
Start from a vertex, in each step take an unused outgoing edge

%

cannot get stuck unless a cycle exists
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Topological Order

A topological order of a digraph G = (V/, E) is an ordering vy, v2, . ..

of V for every edge (vj, v;) we have i < j

'A
S e N ST S e S T
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Topological Order

A topological order of a digraph G = (V/, E) is an ordering vi, v2, ..., vy
of V for every edge (vj, vj) we have i < j J

SENCINC asp ST @i

@ Topological order needs not to be unque

e o)
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Topological Order

If G has a cycle, then no hope for a topological ordering

If G has a topological ordering, then G is a DAG J

m Suppose G has a topological order and G has a cycle C
m Let v; be the first vertex on C in topological order

m Let v; be the vertex just before v; in C

m V; is to the right of v; in topological order j > i

m But (vj,vi) €E

O =0 ® O O O O ® 0w
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Topological Order

If G has a cycle, then no hope for a topological ordering

If G has a topological ordering, then G is a DAG J

Suppose G has a topological order and G has a cycle C

m Let v; be the first vertex on C in topological order

Let v; be the vertex just before v; in C

vj is to the right of v; in topological order j > i
But (vj,vi) € E

O—0 ® O O O O—®» O
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Topological Order

If G is a DAG, then G has a topological ordering J

Constructive Proof: Repeatedly add a source in the remaining DAG to list

Algorithm Topological Sorting of a DAG
while V # () do
Vv < FINDSOURCE(V/, E)
PRINT v
V+— V\{v}
E+ E\{(v,u)|ueV}

m In-degrees array can be computed in O(m) time
m FINDSOURCE will take O(n) time (search for O degree vertex)
m Total runtime of deleting edges is O(m)

m Total runtime is O(nm) > Can be improved a lot
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Topological Order

If G is a DAG, then G has a topological ordering J

Algorithm Topological Sorting of a DAG
IN-DEG[L... n] + IN-DEGREES(G, V)

v +— INDEX-OF-MIN(IN-DEG) > A source must exists if G is DAG
ENQUEUE(Q, v) > Q is a queue of sources
while V # () do

v <~ DEQUEUE(Q)

PRINT Vv

for u € N(v) do
IN-DEG[u] + IN-DEG[u] — 1

if IN-DEG[u] = 0 then > Check if u became a source
ENQUEUE(Q, u)
V+— V\{v}

Runtime is O(n+ m)
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Topological Order via DFS

Lemma: If (u,v) is an edge in a DAG, then f(u) > f(v)

ORI (0
() o s 1 s | |
[ I [ I [ I

time time
cross edge tree or forward edge (check predecessor)

m Check both cases whether DFS first visit u or v
m In either case f(u) > f(v)

Corollary: Largest finishing time is for a source

Yields a DFs based algorithm for topological sorting
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Topological Order via DFS

write vertices in decreasing order of f(v)J
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