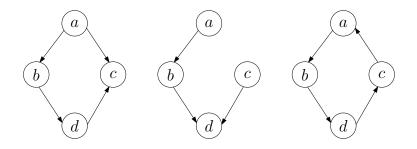
Basic Graph Algorithms

- Exploring Graphs
- Depth First Search
- DFS Forest Start and Finish Time
- DAG, Topological Sorting
- Strongly Connected Components
- Breadth First Search
- Bipartite Graphs

Imdad ullah Khan

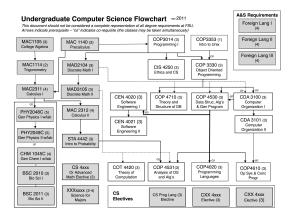
Which ones of the following are DAGs?



Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

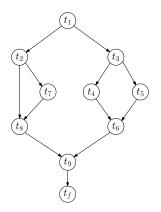
Model precedence constraints (e.g. course pre-requisites)



Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

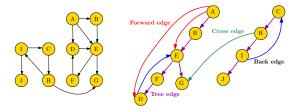
Model dependency constraints (e.g. package dependencies)



- Clearly precedence or dependency graphs cannot have directed cycles
- Could have undirected cycles

DFS Forest: Types of Edges

Overlay all edges of a digraph G onto its DFS forest



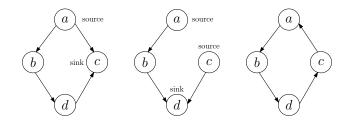
Tree edge - Edge used in the DFS (parent to child)

- Back edge Edge from a node to a non-parent ancestor
- Forward edge Edge from a node to a non-child descendant
- Cross edge Edge from a node in one tree to a node in another

Lemma: A digraph *G* has a directed cycle if and only if the DFS forest of *G* has a back edge

source: A node v in a digraph is a source , if $deg^{-}(v) = 0$

sink: A node v in a digraph is a sink, if $deg^+(v) = 0$



source: A node v in a digraph is a source , if $deg^{-}(v) = 0$

sink: A node v in a digraph is a sink, if $deg^+(v) = 0$

Every DAG has a source and a sink

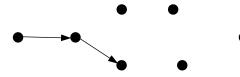
If no sink exists, then every vertex has out-degree ≥ 1 Start from a vertex, in each step take an unused outgoing edge

source: A node v in a digraph is a source , if $deg^{-}(v) = 0$

sink: A node v in a digraph is a sink, if $deg^+(v) = 0$

Every DAG has a source and a sink

If no sink exists, then every vertex has out-degree ≥ 1 Start from a vertex, in each step take an unused outgoing edge

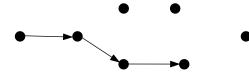


source: A node v in a digraph is a source , if $deg^{-}(v) = 0$

sink: A node v in a digraph is a sink, if $deg^+(v) = 0$

Every DAG has a source and a sink

If no sink exists, then every vertex has out-degree ≥ 1 Start from a vertex, in each step take an unused outgoing edge

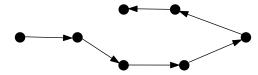


source: A node v in a digraph is a source , if $deg^{-}(v) = 0$

sink: A node v in a digraph is a sink, if $deg^+(v) = 0$

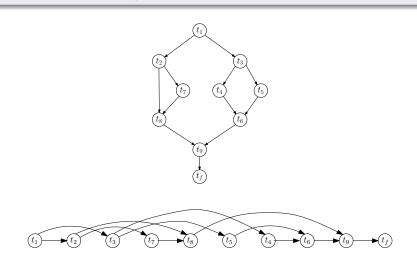
Every DAG has a source and a sink

If no sink exists, then every vertex has out-degree ≥ 1 Start from a vertex, in each step take an unused outgoing edge

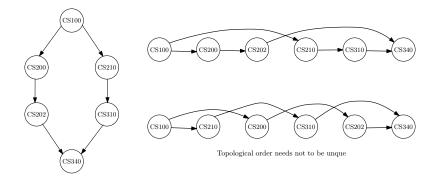


cannot get stuck unless a cycle exists

A topological order of a digraph G = (V, E) is an ordering v_1, v_2, \ldots, v_n of V for every edge (v_i, v_j) we have i < j



A topological order of a digraph G = (V, E) is an ordering v_1, v_2, \ldots, v_n of V for every edge (v_i, v_j) we have i < j



If G has a cycle, then no hope for a topological ordering

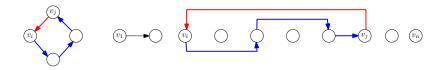
If G has a topological ordering, then G is a DAG

- Suppose *G* has a topological order and *G* has a cycle *C*
- Let v_i be the first vertex on C in topological order
- Let v_j be the vertex just before v_i in C
- v_j is to the right of v_i in topological order j > i
- **But** $(v_j, v_i) \in E$

If G has a cycle, then no hope for a topological ordering

If G has a topological ordering, then G is a DAG

- Suppose G has a topological order and G has a cycle C
- Let v_i be the first vertex on C in topological order
- Let v_i be the vertex just before v_i in C
- v_i is to the right of v_i in topological order j > i
- **But** $(v_j, v_i) \in E$



If G is a DAG, then G has a topological ordering

Constructive Proof: Repeatedly add a source in the remaining DAG to list

Algorithm Topological Sorting of a DAG

while $V \neq \emptyset$ do $v \leftarrow \text{FINDSOURCE}(V, E)$ PRINT v $V \leftarrow V \setminus \{v\}$ $E \leftarrow E \setminus \{(v, u) \mid u \in V\}$

- In-degrees array can be computed in O(m) time
- FINDSOURCE will take O(n) time (search for 0 degree vertex)
- Total runtime of deleting edges is O(m)
- Total runtime is O(nm)

▷ Can be improved a lot

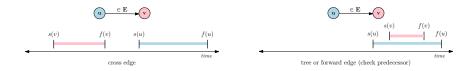
If G is a DAG, then G has a topological ordering

```
Algorithm Topological Sorting of a DAG
IN-DEG[1..., n] \leftarrow IN-DEGREES(G, V)
v \leftarrow \text{INDEX-OF-MIN(IN-DEG)}
                                                      \triangleright A source must exists if G is DAG
ENQUEUE(Q, v)
                                                                  \triangleright Q is a queue of sources
while V \neq \emptyset do
   v \leftarrow \text{DEQUEUE}(Q)
   PRINT V
   for u \in N(v) do
      IN-DEG[u] \leftarrow IN-DEG[u] -1
      if IN-DEG[u] = 0 then
                                                             \triangleright Check if u became a source
         ENQUEUE(Q, u)
   V \leftarrow V \setminus \{v\}
```

Runtime is O(n+m)

Topological Order via DFS

Lemma: If (u, v) is an edge in a DAG, then f(u) > f(v)



- Check both cases whether DFS first visit u or v
- In either case f(u) > f(v)

Corollary: Largest finishing time is for a source

Yields a DFS based algorithm for topological sorting

Topological Order via DFS

