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Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

Which ones of the following are DAGs?
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Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

Model precedence constraints (e.g. course pre-requisites)
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Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

Model dependency constraints (e.g. package dependencies)
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Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

Clearly precedence or dependency graphs cannot have directed cycles

Could have undirected cycles
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DFS Forest: Types of Edges

Overlay all edges of a digraph G onto its DFS forest
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Forward edge

Back edge

Cross edge

Tree edge

Tree edge - Edge used in the DFS (parent to child)

Back edge - Edge from a node to a non-parent ancestor

Forward edge - Edge from a node to a non-child descendant

Cross edge - Edge from a node in one tree to a node in another

Lemma: A digraph G has a directed cycle if and only if the DFS forest of
G has a back edge
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DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle

source: A node v in a digraph is a source , if deg−(v) = 0

sink: A node v in a digraph is a sink, if deg+(v) = 0
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DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle

source: A node v in a digraph is a source , if deg−(v) = 0

sink: A node v in a digraph is a sink, if deg+(v) = 0

Every DAG has a source and a sink

If no sink exists, then every vertex has out-degree ≥ 1
Start from a vertex, in each step take an unused outgoing edge

cannot get stuck unless a cycle exists
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Topological Order

A topological order of a digraph G = (V ,E ) is an ordering v1, v2, . . . , vn
of V for every edge (vi , vj) we have i < j
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Topological Order

A topological order of a digraph G = (V ,E ) is an ordering v1, v2, . . . , vn
of V for every edge (vi , vj) we have i < j
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Topological order needs not to be unque

CS100 CS210 CS200 CS310 CS202 CS340
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Topological Order

If G has a cycle, then no hope for a topological ordering

If G has a topological ordering, then G is a DAG

Suppose G has a topological order and G has a cycle C

Let vi be the first vertex on C in topological order

Let vj be the vertex just before vi in C

vj is to the right of vi in topological order j > i

But (vj, vi) ∈ E

vnv1 vi vjvi

vj
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Topological Order

If G is a DAG, then G has a topological ordering

Constructive Proof: Repeatedly add a source in the remaining DAG to list

Algorithm Topological Sorting of a DAG

while V ̸= ∅ do
v ← findsource(V ,E )

print v

V ← V \ {v}
E ← E \ {(v , u) | u ∈ V }

In-degrees array can be computed in O(m) time

findsource will take O(n) time (search for 0 degree vertex)

Total runtime of deleting edges is O(m)

Total runtime is O(nm) ▷ Can be improved a lot
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Topological Order

If G is a DAG, then G has a topological ordering

Algorithm Topological Sorting of a DAG

in-deg[1 . . . n]← in-degrees(G ,V )
v ← index-of-min(in-deg) ▷ A source must exists if G is DAG
enqueue(Q, v) ▷ Q is a queue of sources
while V ̸= ∅ do
v ← dequeue(Q)
print v
for u ∈ N(v) do

in-deg[u]← in-deg[u]− 1
if in-deg[u] = 0 then ▷ Check if u became a source
enqueue(Q, u)

V ← V \ {v}

Runtime is O(n +m)
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Topological Order via dfs

Lemma: If (u, v) is an edge in a DAG, then f (u) > f (v)

time

s(u) f(u)

cross edge

∈ E
u v

s(v) f(v)

time

s(v) f(v) s(u) f(u)

s(v) f(v)

tree or forward edge (check predecessor)

∈ E
u v

Check both cases whether dfs first visit u or v

In either case f (u) > f (v)

Corollary: Largest finishing time is for a source

Yields a dfs based algorithm for topological sorting

Imdad ullah Khan (LUMS) Basic Graph Algorithms 18 / 19



Topological Order via DFS

write vertices in decreasing order of f (v)
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