Algorithms

Basic Graph Algorithms

Exploring Graphs

Depth First Search
m DFS Forest - Start and Finish Time

m DAG, Topological Sorting

Strongly Connected Components

m Breadth First Search

Bipartite Graphs

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms 1/19

Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle)

Which ones of the following are DAGs?

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms

Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle)

m Model precedence constraints (e.g. course pre-requisites)

A8S Requirements.

Under Ci i F t w201
“SU.
COP3014 (3) COP3353 (1) Foreign Lang
Aoz o) MACII0R) Programming | Intro o Unix @

MAC1114 (2)
“Trigonometry

MAD2104 (3)
Discrete Math |

CIS 4250 3)
Ethics and CS.

COP 3330 (3)

Programming

IMDAD ULLAH KHAN (LUMS)

MAC2311 (9 MAD3105 (&) o de
s 1
Calos rete Man CeN4020(3) | [Cop47i0 | [COP 4530) CDA3100 ()
- Softare Theorya Data Stuc, Algs Computer
Engincering | Stucturs 08| | & Gen Program Organizaton |
PHY2048C (5) o sz
CERD = CDA3101 ()
Computer
PHY204C (5) Orgeniion]
(Gen Physics Il wab STA4442 3)
Intro to Probability
CHM 1045C (9 T Iy 1
€S 4o cotaaz0(s | [copassie COP4020 () COP4610 (3)
BSC2010) " Advanced neory of Anaysisof DS Programming)
e Math Electve (6) Computation and Ag's ot
XXXo000K (2-4)
BSC 2011 (3) ‘Science for cs CS Prog Lang (3) CXX 4xx XX 4xxx
Blo ol Vajors Electives Ecive Ectve () Elctive (3)

Basic Graph Algorithms

3/19

Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

m Model dependency constraints (e.g. package dependencies)

IMDAD uULLAH KHAN (LUMS) Basic Graph Algorithms

Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

m Clearly precedence or dependency graphs cannot have directed cycles

m Could have undirected cycles

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms

DFS Forest: Types of Edges

Overlay all edges of a digraph G onto its DFS forest

m Tree edge - Edge used in the DFS (parent to child)

m Back edge - Edge from a node to a non-parent ancestor

m Forward edge - Edge from a node to a non-child descendant

m Cross edge - Edge from a node in one tree to a node in another

Lemma: A digraph G has a directed cycle if and only if the DFS forest of
G has a back edge J

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms 6/19

DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle

source: A node v in a digraph is a source , if deg”(v) =0

sink: A node v in a digraph is a sink, if deg™(v) =0

0 source source a

source

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms

DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle)
source: A node v in a digraph is a source , if deg(v) =0)
sink: A node v in a digraph is a sink, if deg™(v) =0)

Every DAG has a source and a sink)

If no sink exists, then every vertex has out-degree > 1
Start from a vertex, in each step take an unused outgoing edge

[[]
o——0 ([
[]]

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms 8/19

DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle)
source: A node v in a digraph is a source , if deg(v) =0)
sink: A node v in a digraph is a sink, if deg™(v) =0)

Every DAG has a source and a sink)

If no sink exists, then every vertex has out-degree > 1
Start from a vertex, in each step take an unused outgoing edge

.

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms 9/19

DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle)
source: A node v in a digraph is a source , if deg(v) =0)
sink: A node v in a digraph is a sink, if deg™(v) =0)

Every DAG has a source and a sink)

If no sink exists, then every vertex has out-degree > 1
Start from a vertex, in each step take an unused outgoing edge

Ca

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms 10/19

DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle)
source: A node v in a digraph is a source , if deg(v) =0)
sink: A node v in a digraph is a sink, if deg™(v) =0)

Every DAG has a source and a sink)

If no sink exists, then every vertex has out-degree > 1
Start from a vertex, in each step take an unused outgoing edge

%

cannot get stuck unless a cycle exists
IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms 11/19

Topological Order

A topological order of a digraph G = (V/, E) is an ordering vy, v2, . ..

of V for every edge (vj, v;) we have i < j

'A
S e N ST S e S T

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms

Topological Order

A topological order of a digraph G = (V/, E) is an ordering vi, v2, ..., vy
of V for every edge (vj, vj) we have i < j J

SENCINC asp ST @i

@ Topological order needs not to be unque

e o)

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms

Topological Order

If G has a cycle, then no hope for a topological ordering

If G has a topological ordering, then G is a DAG J

m Suppose G has a topological order and G has a cycle C
m Let v; be the first vertex on C in topological order

m Let v; be the vertex just before v; in C

m V; is to the right of v; in topological order j > i

m But (vj,vi) €E

O =0 ® O O O O ® 0w

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms 14 /19

Topological Order

If G has a cycle, then no hope for a topological ordering

If G has a topological ordering, then G is a DAG J

Suppose G has a topological order and G has a cycle C

m Let v; be the first vertex on C in topological order

Let v; be the vertex just before v; in C

vj is to the right of v; in topological order j > i
But (vj,vi) € E

O—0 ® O O O O—®» O

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms 15/19

Topological Order

If G is a DAG, then G has a topological ordering J

Constructive Proof: Repeatedly add a source in the remaining DAG to list

Algorithm Topological Sorting of a DAG
while V # () do
Vv < FINDSOURCE(V/, E)
PRINT v
V+— V\{v}
E+ E\{(v,u)|ueV}

m In-degrees array can be computed in O(m) time
m FINDSOURCE will take O(n) time (search for O degree vertex)
m Total runtime of deleting edges is O(m)

m Total runtime is O(nm) > Can be improved a lot

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms 16 /19

Topological Order

If G is a DAG, then G has a topological ordering J

Algorithm Topological Sorting of a DAG
IN-DEG[L... n] + IN-DEGREES(G, V)

v +— INDEX-OF-MIN(IN-DEG) > A source must exists if G is DAG
ENQUEUE(Q, v) > Q is a queue of sources
while V # () do

v <~ DEQUEUE(Q)

PRINT Vv

for u € N(v) do
IN-DEG[u] + IN-DEG[u] — 1

if IN-DEG[u] = 0 then > Check if u became a source
ENQUEUE(Q, u)
V+— V\{v}

Runtime is O(n+ m)

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms 17 /19

Topological Order via DFS

Lemma: If (u,v) is an edge in a DAG, then f(u) > f(v)

ORI (0
() o s 1 s | |
[I [I [I

time time
cross edge tree or forward edge (check predecessor)

m Check both cases whether DFS first visit u or v
m In either case f(u) > f(v)

Corollary: Largest finishing time is for a source

Yields a DFs based algorithm for topological sorting

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms

18/19

Topological Order via DFS

write vertices in decreasing order of f(v)J

IMDAD ULLAH KHAN (LUMS) Basic Graph Algorithms

