
Algorithms

Basic Graph Algorithms

Exploring Graphs

Depth First Search

DFS Forest - Start and Finish Time

DAG, Topological Sorting

Strongly Connected Components

Breadth First Search

Bipartite Graphs

Imdad ullah Khan

Imdad ullah Khan (LUMS) Basic Graph Algorithms 1 / 19



Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

Which ones of the following are DAGs?

a

b c

d

a

b c

d

a

b c

d

Imdad ullah Khan (LUMS) Basic Graph Algorithms 2 / 19



Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

Model precedence constraints (e.g. course pre-requisites)

Imdad ullah Khan (LUMS) Basic Graph Algorithms 3 / 19



Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

Model dependency constraints (e.g. package dependencies)

t1

t2

t7

t8

t4

t3

t5

t6

t9

tf

Imdad ullah Khan (LUMS) Basic Graph Algorithms 4 / 19



Directed Acyclic Graphs (DAG)

A DAG is a directed graph that contains no directed cycle

Clearly precedence or dependency graphs cannot have directed cycles

Could have undirected cycles

Imdad ullah Khan (LUMS) Basic Graph Algorithms 5 / 19



DFS Forest: Types of Edges

Overlay all edges of a digraph G onto its DFS forest

A B

E

GF

DC

H

I

J

A

B

E

G
F

D

C

H

I

J

Forward edge

Back edge

Cross edge

Tree edge

Tree edge - Edge used in the DFS (parent to child)

Back edge - Edge from a node to a non-parent ancestor

Forward edge - Edge from a node to a non-child descendant

Cross edge - Edge from a node in one tree to a node in another

Lemma: A digraph G has a directed cycle if and only if the DFS forest of
G has a back edge

Imdad ullah Khan (LUMS) Basic Graph Algorithms 6 / 19



DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle

source: A node v in a digraph is a source , if deg−(v) = 0

sink: A node v in a digraph is a sink, if deg+(v) = 0

a

b c

d

a

b c

d

a

b c

d

source

sink

source

sink

source

Imdad ullah Khan (LUMS) Basic Graph Algorithms 7 / 19



DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle

source: A node v in a digraph is a source , if deg−(v) = 0

sink: A node v in a digraph is a sink, if deg+(v) = 0

Every DAG has a source and a sink

If no sink exists, then every vertex has out-degree ≥ 1
Start from a vertex, in each step take an unused outgoing edge

cannot get stuck unless a cycle exists
Imdad ullah Khan (LUMS) Basic Graph Algorithms 8 / 19



DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle

source: A node v in a digraph is a source , if deg−(v) = 0

sink: A node v in a digraph is a sink, if deg+(v) = 0

Every DAG has a source and a sink

If no sink exists, then every vertex has out-degree ≥ 1
Start from a vertex, in each step take an unused outgoing edge

cannot get stuck unless a cycle exists
Imdad ullah Khan (LUMS) Basic Graph Algorithms 9 / 19



DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle

source: A node v in a digraph is a source , if deg−(v) = 0

sink: A node v in a digraph is a sink, if deg+(v) = 0

Every DAG has a source and a sink

If no sink exists, then every vertex has out-degree ≥ 1
Start from a vertex, in each step take an unused outgoing edge

cannot get stuck unless a cycle exists
Imdad ullah Khan (LUMS) Basic Graph Algorithms 10 / 19



DAG: Source and Sink

A DAG is a directed graph that contains no directed cycle

source: A node v in a digraph is a source , if deg−(v) = 0

sink: A node v in a digraph is a sink, if deg+(v) = 0

Every DAG has a source and a sink

If no sink exists, then every vertex has out-degree ≥ 1
Start from a vertex, in each step take an unused outgoing edge

cannot get stuck unless a cycle exists
Imdad ullah Khan (LUMS) Basic Graph Algorithms 11 / 19



Topological Order

A topological order of a digraph G = (V ,E ) is an ordering v1, v2, . . . , vn
of V for every edge (vi , vj) we have i < j

t1

t2

t7

t8

t4

t3

t5

t6

t9

tf

t1 t2 t3 t7 t8 t5 t4 t6 t9 tf

Imdad ullah Khan (LUMS) Basic Graph Algorithms 12 / 19



Topological Order

A topological order of a digraph G = (V ,E ) is an ordering v1, v2, . . . , vn
of V for every edge (vi , vj) we have i < j

CS100

CS200

CS202

CS210

CS310

CS340

CS100 CS200 CS202 CS210 CS310 CS340

Topological order needs not to be unque

CS100 CS210 CS200 CS310 CS202 CS340

Imdad ullah Khan (LUMS) Basic Graph Algorithms 13 / 19



Topological Order

If G has a cycle, then no hope for a topological ordering

If G has a topological ordering, then G is a DAG

Suppose G has a topological order and G has a cycle C

Let vi be the first vertex on C in topological order

Let vj be the vertex just before vi in C

vj is to the right of vi in topological order j > i

But (vj, vi) ∈ E

vnv1 vi vjvi

vj

Imdad ullah Khan (LUMS) Basic Graph Algorithms 14 / 19



Topological Order

If G has a cycle, then no hope for a topological ordering

If G has a topological ordering, then G is a DAG

Suppose G has a topological order and G has a cycle C

Let vi be the first vertex on C in topological order

Let vj be the vertex just before vi in C

vj is to the right of vi in topological order j > i

But (vj, vi) ∈ E

vnv1 vi vjvi

vj

Imdad ullah Khan (LUMS) Basic Graph Algorithms 15 / 19



Topological Order

If G is a DAG, then G has a topological ordering

Constructive Proof: Repeatedly add a source in the remaining DAG to list

Algorithm Topological Sorting of a DAG

while V ̸= ∅ do
v ← findsource(V ,E )

print v

V ← V \ {v}
E ← E \ {(v , u) | u ∈ V }

In-degrees array can be computed in O(m) time

findsource will take O(n) time (search for 0 degree vertex)

Total runtime of deleting edges is O(m)

Total runtime is O(nm) ▷ Can be improved a lot

Imdad ullah Khan (LUMS) Basic Graph Algorithms 16 / 19



Topological Order

If G is a DAG, then G has a topological ordering

Algorithm Topological Sorting of a DAG

in-deg[1 . . . n]← in-degrees(G ,V )
v ← index-of-min(in-deg) ▷ A source must exists if G is DAG
enqueue(Q, v) ▷ Q is a queue of sources
while V ̸= ∅ do
v ← dequeue(Q)
print v
for u ∈ N(v) do

in-deg[u]← in-deg[u]− 1
if in-deg[u] = 0 then ▷ Check if u became a source
enqueue(Q, u)

V ← V \ {v}

Runtime is O(n +m)

Imdad ullah Khan (LUMS) Basic Graph Algorithms 17 / 19



Topological Order via dfs

Lemma: If (u, v) is an edge in a DAG, then f (u) > f (v)

time

s(u) f(u)

cross edge

∈ E
u v

s(v) f(v)

time

s(v) f(v) s(u) f(u)

s(v) f(v)

tree or forward edge (check predecessor)

∈ E
u v

Check both cases whether dfs first visit u or v

In either case f (u) > f (v)

Corollary: Largest finishing time is for a source

Yields a dfs based algorithm for topological sorting

Imdad ullah Khan (LUMS) Basic Graph Algorithms 18 / 19



Topological Order via DFS

write vertices in decreasing order of f (v)
t1

t2

t7

t8

t4

t3

t5

t6

t9

tf

[1, 20]

[2, 11]

[3, 10]

[4, 9]

[5, 8]

[6, 7]

[12, 19]

[13, 16]

[14, 15]

[16, 17]

t1 t3 t5 t4 t6 t2 t7 t8 t9 tf

Imdad ullah Khan (LUMS) Basic Graph Algorithms 19 / 19


