Algorithms

Basic Graph Algorithms

- Exploring Graphs
- Depth First Search

■ DFS Forest - Start and Finish Time

- DAG, Topological Sorting

■ Strongly Connected Components
■ Breadth First Search

- Bipartite Graphs

Imdad ullah Khan

Depth First Search: Forest

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{zEROS}(n)$
for all $v \in V$ do
if visited[v] $=0$ then DFS-EXPLORE (v)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s) visited $[s] \leftarrow 1$ for $u \in N(s)$ do
if visited $[u]=0$ then DFS-EXPLORE (u)

When call to DFS-EXPLORE (s) is executed, all vertices in $R(s)$ are visited

- When DFS-EXPLORE (u) is finished one 'DFS tree' is formed containing all vertices reachable from u
■ The next DFS-EXPLORE (v) called from outer loop forms a new tree

Algorithm $\operatorname{DFS}(G)$

```
visited }\leftarrow\operatorname{ZEROS(n)
for all v}\inV\mathrm{ do
    if visited[v]=0 then
        DFS-EXPLORE(v)
```

- DFS explores the entire graph
- Explores one neighbor first (in depth), before going to next neighbor
- Works both for undirected and directed graphs
- Runtime of $O(n+m)$ means DFS doesn't add any cost (asymptotically) to any graph algorithm, we typically do it as a pre-processing step
- Answers many questions

■ is graph connected, how many components in the graph, find $R(s), \cdots$

- A fundamental algorithm has many applications we will discuss some
- For applications we need some extra book-keeping with DFS

DFS Forest

■ Record predecessor relationships (save call hierarchy)

- Implicitly build a forest

■ Predecessors subgraph (edges used for calling) forms DFS forest

- We first go as deep as we can

■ For undirected graphs, each DFS tree is a connected component

DFS Forest: Directed Graphs

DFS Forest of a digraph

DFS Forest: Types of Edges

Overlay all edges of a digraph G onto its DFS forest

DFS Forest: Types of Edges

Overlay all edges of a digraph G onto its DFS forest

- Tree edge - Edge used in the DFS (parent to child)

■ Back edge - Edge from a node to a non-parent ancestor
■ Forward edge - Edge from a node to a non-child descendant

- Cross edge - Edge from a node in one tree to a node in another

DFS Forest: Start and Finish Exploration

■ Extra book keeping: timestamps for each vertex

- start time: $s[v]$ and
end time: $f[v]$

```
Algorithm \(\operatorname{DFS}(G)\)
    visited \(\leftarrow \operatorname{ZEROS}(n)\)
    time \(\leftarrow 1\)
    for all \(v \in V\) do
        if visited \([v]=0\) then
        DFS-EXPLORE ( \(v\) )
```

```
Algorithm DFS-EXPLORE
    function DFS-EXPLORE ( \(v\) )
        visited \([v] \leftarrow 1\)
        \(s[v] \leftarrow\) time
        time \(\leftarrow\) time +1
        for \(u \in N(v)\) do
        if visited \([u]=0\) then
            DFS-EXPLORE ( \(u\) )
    \(f[v] \leftarrow\) time
    time \(\leftarrow\) time +1
```


DFS Forest: Start and Finish Time

Algorithm $\operatorname{DFS}(G)$
``` visited\leftarrow\operatorname{ZEROS(n)
 time \leftarrow }\leftarrow
 for all v\inV do
 if visited[v]=0 then
 DFS-EXPLORE(v)

```
}
function DFS-EXPLORE \((v)\)
visited \([v] \leftarrow 1\)
\(s[v] \leftarrow\) time
time \(\leftarrow\) time +1
for \(u \in N(v)\) do
if visited \([u]=0\) then
DFS-EXPLORE ( \(u\) )
\(f[v] \leftarrow\) time
time \(\leftarrow\) time +1


\section*{DFS Forest: Start and Finish Time}

\author{
Algorithm \(\operatorname{DFS}(G)\) \\ ```
visited }\leftarrow\operatorname{ZEROS(n) \\ time }\leftarrow \\ for all v\inV do \\ if visited[v]=0 then \\ DFS-EXPLORE(v)
```

}
function DFS-EXPLORE (v)
visited $[v] \leftarrow 1$
$s[v] \leftarrow$ time
time \leftarrow time +1
for $u \in N(v)$ do
if visited $[u]=0$ then
DFS-EXPLORE (u)
$f[v] \leftarrow$ time
time \leftarrow time +1

DFS Forest: Start and Finish Time

Algorithm $\operatorname{DFS}(G)$
``` visited\leftarrow\operatorname{ZEROS(n)
 time }\leftarrow
 for all v\inV do
 if visited[v]=0 then
 DFS-EXPLORE(v)

```
}

function DFS-EXPLORE \((v)\)
visited \([v] \leftarrow 1\)
\(s[v] \leftarrow\) time
time \(\leftarrow\) time +1
for \(u \in N(v)\) do
if visited \([u]=0\) then
DFS-EXPLORE ( \(u\) )
\(f[v] \leftarrow\) time
time \(\leftarrow\) time +1


\section*{DFS Forest: Start and Finish Time}

\author{
Algorithm \(\operatorname{DFS}(G)\) \\ ```
visited}\leftarrow\operatorname{ZEROS(n) \\ time }\leftarrow \\ for all v\inV do \\ if visited[v]=0 then \\ DFS-EXPLORE(v)
```

}

function DFS-EXPLORE (v)
visited $[v] \leftarrow 1$
$s[v] \leftarrow$ time
time \leftarrow time +1
for $u \in N(v)$ do
if visited $[u]=0$ then
DFS-EXPLORE (u)
$f[v] \leftarrow$ time
time \leftarrow time +1

DFS Forest: Start and Finish Time

\author{
Algorithm $\operatorname{DFS}(G)$

 ```visited \(\leftarrow \operatorname{ZEROS}(n)\) \\ \\```
visited $\leftarrow \operatorname{ZEROS}(n)$

 time $\leftarrow 1$

 time $\leftarrow 1$

 for all $v \in V$ do

 for all $v \in V$ do

 if visited $[v]=0$ then

 if visited $[v]=0$ then

 DFS-EXPLORE (v)

```
} \\ \\ DFS-EXPLORE ( \(v\) )
```

}

$$
\begin{aligned}
& \text { function DFS-EXPLORE }(v) \\
& \text { visited }[v] \leftarrow 1 \\
& s[v] \leftarrow \text { time } \\
& \text { time } \leftarrow \text { time }+1 \\
& \text { for } u \in N(v) \text { do } \\
& \text { if visited }[u]=0 \text { then } \\
& \quad \text { DFS-EXPLORE }(u) \\
& f[v] \leftarrow \text { time } \\
& \text { time } \leftarrow \text { time }+1 \\
& \hline
\end{aligned}
$$

DFS Forest: Start and Finish Time

Algorithm $\operatorname{DFS}(G)$
``` visited\leftarrow\operatorname{ZEROS(n)
 time \leftarrow }\leftarrow
 for all v\inV do
 if visited[v]=0 then
 DFS-EXPLORE(v)

```
}

[5, 6]
function DFS-EXPLORE \((v)\)
visited \([v] \leftarrow 1\)
\(s[v] \leftarrow\) time
time \(\leftarrow\) time +1
for \(u \in N(v)\) do
if visited \([u]=0\) then
DFS-EXPLORE ( \(u\) )
\(f[v] \leftarrow\) time
time \(\leftarrow\) time +1


\section*{DFS Forest: Start and Finish Time}

\author{
Algorithm \(\operatorname{DFS}(G)\) \\ ```
visited}\leftarrow\operatorname{ZEROS(n) \\ time \leftarrow }\leftarrow \\ for all v\inV do \\ if visited[v]=0 then \\ DFS-EXPLORE(v)
```

}

DFS Forest: Start and Finish Time

Algorithm $\operatorname{DFS}(G)$
``` visited\leftarrow\operatorname{ZEROS(n)
 time \leftarrow }\leftarrow
 for all v\inV do
 if visited[v]=0 then
 DFS-EXPLORE(v)

```
}


\section*{DFS Forest: Start and Finish Time}

\author{
Algorithm \(\operatorname{DFS}(G)\) \\ ```
visited}\leftarrow\operatorname{ZEROS(n) \\ time \leftarrow }\leftarrow \\ for all v\inV do \\ if visited[v]=0 then \\ DFS-EXPLORE(v)
```

}

DFS Forest: Start and Finish Time

Algorithm $\operatorname{DFS}(G)$
``` visited\leftarrow\operatorname{ZEROS(n)
 time \leftarrow }\leftarrow
 for all v}\inV\mathrm{ do
 if visited[v]=0 then
 DFS-EXPLORE(v)

```
}


\section*{DFS Forest: Start and Finish Time}

\author{
Algorithm \(\operatorname{DFS}(G)\) \\  \\  \\  \\  \\ 
}
    function DFS-EXPLORE ( \(v\) )
        visited \([v] \leftarrow 1\)
    \(s[v] \leftarrow\) time
    time \(\leftarrow\) time +1
    for \(u \in N(v)\) do
        if visited \([u]=0\) then
        DFS-EXPLORE ( \(u\) )
    \(f[v] \leftarrow\) time
    time \(\leftarrow\) time +1

[5, 6]


\section*{DFS Forest: Start and Finish Time}

\author{
Algorithm \(\operatorname{DFS}(G)\) \\ ```
visited }\leftarrow\operatorname{ZEROS(n) \\ time \leftarrow }\leftarrow \\ for all v\inV do \\ if visited[v]=0 then \\ DFS-EXPLORE(v)
```

}

[5, 6]
function DFS-EXPLORE (v)
visited $[v] \leftarrow 1$
$s[v] \leftarrow$ time
time \leftarrow time +1
for $u \in N(v)$ do
if visited $[u]=0$ then
DFS-EXPLORE (u)
$f[v] \leftarrow$ time
time \leftarrow time +1

DFS Forest: Types of Edges

Overlay all edges of a digraph G onto its DFS forest

- Tree edge - Edge used in the DFS (parent to child)
- Back edge - Edge from a node to a non-parent ancestor

■ Forward edge - Edge from a node to a non-child descendant

- Cross edge - Edge from a node in one tree to a node in another

DFS Forest: Identifying Edge Type

DFS Forest: Identifying Edge Type

DFS Forest: Identifying Edge Type

DFS Forest: Identifying Edge Type

(u) $\in \mathrm{E} \rightarrow$

back edge

DFS Forest: Identifying Edge Type

DFS Forest: Identifying Edge Type

tree or forward edge (check predecessor)

DFS Forest: Cycles in Graphs

Lemma: A digraph G has a directed cycle if and only if the DFS forest of G has a back edge

