Algorithms

Basic Graph Algorithms

- Exploring Graphs
- Depth First Search
- DFS Forest - Start and Finish Time
- DAG, Topological Sorting

■ Strongly Connected Components

- Breadth First Search
- Bipartite Graphs

Imdad ullah Khan

Reachability

Given a graph $G=(V, E)$
A vertex v is reachable form u, if there exists a path from u to v

- $R(u)$: the set of vertices reachable from u

$$
R(u):\{v: \exists \text { a path from } u \text { to } v\}
$$

Fundamental graph exploration problems

- Given s and u, is $u \in R(s)$?
- Given s, find $R(s)$

A more constructive/algorithmic definition of reachability:
v is reachable form s, if v is a neighbor of s or v is reachable from a neighbor of s

$$
R(s)=\{s\} \bigcup_{x \in N(s)} R(x)
$$

Explore

Input: A graph $G=(V, E)$ and a node $s \in V$
Output: All nodes that are reachable from $s, R(s)$

- $R(s)$ is saved as a bit-vector visited $[1 \ldots n]$
\triangleright fixed order
- visited $[i]=1 \Leftrightarrow \quad v_{i} \in R(s)$
- Populate visited[•] using $R(s)=\{s\} \bigcup_{x \in N(s)} R(x)$

```
Algorithm REC-EXPLORE(s)
visited [•] \(\leftarrow \operatorname{ZEROS}(n)\)
function \(\operatorname{EXPLORE}(G, s)\)
    visited \([s] \leftarrow 1\)
    for \(x \in N(s)\) do
        if visited \([x]=0\) then
        \(\operatorname{EXPLORE}(G, x)\)
```

```
Algorithm ITR-EXPLORE(s)
    visited \(\leftarrow \operatorname{ZEROS}(n)\)
    insert (todo, s)
    while todo \(\neq \emptyset\) do
        \(u \leftarrow\) REMOVE(todo)
        visited \([u] \leftarrow 1\)
        for \(x \in N(u)\) do
        if \(\operatorname{visited}[x]=0\) then
        INSERT(todo, \(x\) )
```


Exploring the whole graph

- EXPLORE is still under-specified to analyze its runtime
- The EXPLORE procedure visits only the portion of graph that is reachable from the given source s
- To examine the rest of the graph, we restart the procedure elsewhere, at some unvisited vertex

■ What if we start EXPLORE from some already visited vertex?
■ Notice that algorithm readily extends to directed graphs

Depth First Search

Input: A graph $G=(V, E)$
Output: 'Explore' the graph G

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

Depth First Search: Forest

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do
if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s)
visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

When call to DFS-EXPLORE (s) is executed, all vertices in $R(s)$ are visited

- When DFS-EXPlORE (u) is finished one 'DFS tree' is formed containing all vertices reachable from u
■ The next DFS-EXPLORE (v) called from outer loop forms a new tree

Depth First Search: Runtime

Algorithm $\operatorname{DFS}(G)$
visited $\leftarrow \operatorname{ZEROS}(n)$
for all $s \in V$ do if visited $[s]=0$ then DFS-EXPLORE(s)

Algorithm DFS-EXPLORE(s)
function DFS-EXPLORE(s) visited $[s] \leftarrow 1$ for $x \in N(s)$ do
if visited $[x]=0$ then DFS-EXPLORE (x)

- $G=(V, E),|V|=n,|E|=m$

■ Initialization and visited checking takes $O(n)$ time
Total runtime within all EXPLORE calls is $\quad \sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)=2 m$

- Total runtime is $O(n+m)$

Algorithm $\operatorname{DFS}(G)$

$$
\begin{aligned}
& \text { visited } \leftarrow \operatorname{ZEROS}(n) \\
& \text { for all } s \in V \text { do } \\
& \text { if visited }[s]=0 \text { then } \\
& \quad \operatorname{DFS}-\operatorname{EXPLORE}(s)
\end{aligned}
$$

Algorithm DFS-EXPLORE(s)

```
function DFS-EXPLORE(s)
    visited[s]}\leftarrow
        for x}\inN(s) d
        if visited[x] = 0 then
        DFS-EXPLORE( }x\mathrm{ )
```

- DFS explores the entire graph

■ Explores one neighbor first (in depth), before going to next neighbor

- Works both for undirected and directed graphs
- Runtime of $O(n+m)$ is equal to reading the input graph

■ DFS doesn't add any cost (asymptotically) to any graph algorithm, we typically do it as a pre-processing step

- Answers many questions

■ is graph connected, how many components in the graph, find $R(s), \cdots$
■ A fundamental algorithm with many applications; we will discuss some

