
Algorithms

Basic Graph Algorithms

Exploring Graphs

Depth First Search

DFS Forest - Start and Finish Time

DAG, Topological Sorting

Strongly Connected Components

Breadth First Search

Bipartite Graphs

Imdad ullah Khan

Imdad ullah Khan (LUMS) Basic Graph Algorithms 1 / 9



Reachability

Given a graph G = (V ,E )

A vertex v is reachable form u, if there exists a path from u to v

R(u) : the set of vertices reachable from u

R(u) :
{
v : ∃ a path from u to v

}

a

b

c d

e

f g

g is reachable from a

g ∈ R(a)

f /∈ R(a)

R(g) = {e}
R(e) = {}
R(c) = {a, b, d , e, g}

Imdad ullah Khan (LUMS) Basic Graph Algorithms 2 / 9



Reachability

Given a graph G = (V ,E )

A vertex v is reachable form u, if there exists a path from u to v

R(u) : the set of vertices reachable from u

R(u) :
{
v : ∃ a path from u to v

}
Fundamental graph exploration problems Given s and u, is u ∈ R(s)?

Given s, find R(s)

A more constructive/algorithmic definition of reachability:

v is reachable form s, if v is a neighbor of s or v is reachable from a neighbor of s

R(s) = {s}
⋃

x∈N(s)

R(x)

Imdad ullah Khan (LUMS) Basic Graph Algorithms 3 / 9



Recursive Explore

Input: A graph G = (V ,E ) and a node s ∈ V
Output: All nodes that are reachable from s, R(s)

Encompasses the simpler question whether s is connected to v

We give an algorithm for both directed and undirected graphs

R(s) is saved as a bit-vector visited [1 . . . n] ▷ fixed order

visited [i ] = 1 ⇐⇒ vi ∈ R(s)

Populate visited [·] using R(s) = {s}
⋃

x∈N(s)

R(x)

Imdad ullah Khan (LUMS) Basic Graph Algorithms 4 / 9



Recursive Explore

Input: A graph G = (V ,E ) and a node s ∈ V
Output: All nodes that are reachable from s, R(s)

R(s) is saved as a bit-vector visited [1 . . . n] ▷ fixed order

visited [i ] = 1 ⇐⇒ vi ∈ R(s)

Populate visited [·] using R(s) = {s}
⋃

x∈N(s) R(x)

Algorithm Recursive algorithm to find R(s)

visited [·]← zeros(n) ▷ initially no vertex is in R(s)

function explore(G ,s)

visited [s]← 1

for x ∈ N(s) do ▷ a traversal of the adjacency list of s

explore(G ,x)

Recursion stopping condition?

Imdad ullah Khan (LUMS) Basic Graph Algorithms 5 / 9



Recursive Explore

Input: A graph G = (V ,E ) and a node s ∈ V
Output: All nodes that are reachable from s, R(s)

R(s) is saved as a bit-vector visited [1 . . . n] ▷ fixed order

visited [i ] = 1 ⇐⇒ vi ∈ R(s)

Populate visited [·] using R(s) = {s}
⋃

x∈N(s) R(x)

Algorithm Recursive algorithm to find R(s)

visited [·]← zeros(n) ▷ initially no vertex is in R(s)

function explore(G ,s)

visited [s]← 1

for x ∈ N(s) do ▷ A traversal of the adjacency list of s

if visited [x ] = 0 then

explore(G ,x)

Imdad ullah Khan (LUMS) Basic Graph Algorithms 6 / 9



Iterative Explore

Input: A graph G = (V ,E ) and a node s ∈ V
Output: All nodes that are reachable from s, R(s)

Keep a todolist of nodes yet to be explored

Initially no node is visited and todolist contains s

Until the todolist is empty, remove a node from todolist, if not visited
mark it visited and put all its neighbors in todolist

Algorithm explore(s) to find R(s)

visited ← zeros(n)

insert(todo, s)

while todo ̸= ∅ do
u ← remove(todo)

visited [u]← 1

for x ∈ N(u) do ▷ A traversal of the adjacency list of u

if visited [x ] = 0 then
insert(todo, x)

Imdad ullah Khan (LUMS) Basic Graph Algorithms 7 / 9



Correctness of explore(s)

If u ∈ R(s), then visited [u] = 1

Proof by induction on length of s − u path

If length of s − u path is 0, then u = s and visited [s] = 1

If path is s, v1, . . . , vk , u ▷ length is k + 1

By inductive hypothesis visited [vk ] = 1

On calling explore(vk), visited [u] will become 1

If u /∈ R(s), then visited [u] = 0

Since explore(v) is only called through some neighbor of v ,
visited [u] will never become 1

Imdad ullah Khan (LUMS) Basic Graph Algorithms 8 / 9



Exploring the whole graph

explore is still under-specified to analyze its runtime

The explore procedure visits only the portion of the graph
reachable from the given source s

To examine the rest of the graph, we restart the procedure elsewhere,
at some unvisited vertex

What if we start explore from some already visited vertex?

Notice that algorithm readily extends to directed graphs

Imdad ullah Khan (LUMS) Basic Graph Algorithms 9 / 9


