Algorithms

Basic Graph Algorithms

- Exploring Graphs
- Depth First Search

■ DFS Forest - Start and Finish Time

- DAG, Topological Sorting

■ Strongly Connected Components

- Breadth First Search
- Bipartite Graphs

Imdad ULLAH KHAN

Reachability

Given a graph $G=(V, E)$
A vertex v is reachable form u, if there exists a path from u to v

- $R(u)$: the set of vertices reachable from u

$$
R(u):\{v: \exists \text { a path from } u \text { to } v\}
$$

- g is reachable from a
- $g \in R(a)$
- $f \notin R(a)$
- $R(g)=\{e\}$
- $R(e)=\{ \}$
- $R(c)=\{a, b, d, e, g\}$

Reachability

Given a graph $G=(V, E)$
A vertex v is reachable form u, if there exists a path from u to v

- $R(u)$: the set of vertices reachable from u

$$
R(u):\{v: \exists \text { a path from } u \text { to } v\}
$$

Fundamental graph exploration problems

- Given s and u, is $u \in R(s)$?
- Given s, find $R(s)$

A more constructive/algorithmic definition of reachability:
v is reachable form s, if v is a neighbor of s or v is reachable from a neighbor of s

$$
R(s)=\{s\} \bigcup_{x \in N(s)} R(x)
$$

Recursive Explore

Input: A graph $G=(V, E)$ and a node $s \in V$
Output: All nodes that are reachable from $s, R(s)$

■ Encompasses the simpler question whether s is connected to v

- We give an algorithm for both directed and undirected graphs
- $R(s)$ is saved as a bit-vector visited $[1 \ldots n]$
\triangleright fixed order

$$
\operatorname{visited}[i]=1 \Longleftrightarrow v_{i} \in R(s)
$$

- Populate visited[•] using $R(s)=\{s\} \underset{x \in N(s)}{\bigcup} R(x)$

Recursive Explore

Input: A graph $G=(V, E)$ and a node $s \in V$
Output: All nodes that are reachable from $s, R(s)$
■ $R(s)$ is saved as a bit-vector visited $[1 \ldots n]$
\triangleright fixed order

- $\operatorname{visited}[i]=1 \Longleftrightarrow v_{i} \in R(s)$
- Populate visited[•] using $R(s)=\{s\} \bigcup_{x \in N(s)} R(x)$

Algorithm Recursive algorithm to find $R(s)$

```
visited[]]}\leftarrow ZEROS(n
 initially no vertex is in R(s)
function EXPLORE(G,s)
    visited[s]}\leftarrow
    for }x\inN(s)\mathrm{ do
        EXPLORE(G,x)
```


Recursion stopping condition?

Recursive Explore

Input: A graph $G=(V, E)$ and a node $s \in V$
Output: All nodes that are reachable from $s, R(s)$

- $R(s)$ is saved as a bit-vector visited $[1 \ldots n]$
\triangleright fixed order
- $\operatorname{visited}[i]=1 \Longleftrightarrow v_{i} \in R(s)$
- Populate visited[•] using $R(s)=\{s\} \bigcup_{x \in N(s)} R(x)$

Algorithm Recursive algorithm to find $R(s)$

```
visited[[]}\leftarrow\operatorname{zeros(n)
\(\triangleright\) initially no vertex is in \(R(s)\)
function EXPLORE \((G, s)\)
visited \([s] \leftarrow 1\)
for \(x \in N(s)\) do
\(\triangleright\) A traversal of the adjacency list of \(s\)
if visited \([x]=0\) then Explore \((G, x)\)
```


Iterative Explore

Input: A graph $G=(V, E)$ and a node $s \in V$
Output: All nodes that are reachable from $s, R(s)$

- Keep a todolist of nodes yet to be explored
- Initially no node is visited and todolist contains s
- Until the todolist is empty, remove a node from todolist, if not visited mark it visited and put all its neighbors in todolist

Algorithm EXPLORE(s) to find $R(s)$
visited $\leftarrow \operatorname{ZEROS}(n)$
insert (todo, s)
while todo $\neq \emptyset$ do
$u \leftarrow$ REMOVE(todo)
visited $[u] \leftarrow 1$
for $x \in N(u)$ do $\quad \triangleright$ A traversal of the adjacency list of u if $\operatorname{visited}[x]=0$ then INSERT(todo, x)

Correctness of EXPLORE(s)

If $u \in R(s)$, then $\operatorname{visited}[u]=1$

- Proof by induction on length of $s-u$ path

■ If length of $s-u$ path is 0 , then $u=s$ and visited $[s]=1$
■ If path is $s, v_{1}, \ldots, v_{k}, u$
\triangleright length is $k+1$
■ By inductive hypothesis visited $\left[v_{k}\right]=1$
■ On calling EXPLORE $\left(v_{k}\right)$, visited $[u]$ will become 1

If $u \notin R(s)$, then $\operatorname{visited}[u]=0$

- Since EXPLORE (v) is only called through some neighbor of v, visited [u] will never become 1

Exploring the whole graph

- EXPLORE is still under-specified to analyze its runtime
- The EXPLORE procedure visits only the portion of the graph reachable from the given source s
- To examine the rest of the graph, we restart the procedure elsewhere, at some unvisited vertex
- What if we start EXPLORE from some already visited vertex?

■ Notice that algorithm readily extends to directed graphs

