Algorithms

Graphs and Trees

- Graphs Definition and Applications

■ Basic terminology: degree, incidence, adjacency, neighbors

- Graph representation
- Adjacency matrix and Adjacency list
- Graph connectivity
- Path and Cycle
- Connected graphs and connected components

■ Strongly connected (di)graphs and strongly connected components
■ Trees and Forest

Imdad ullah Khan

Graphs

Formally: A graph is
1 a set of vertices V
2 a set of edges E, a collection of 2-sets of V

$$
\begin{aligned}
& G=(V, E) \\
& V=\{a, b, c, d\} \\
& E=\{(a, b),(a, c),(b, c),(b, d)\}
\end{aligned}
$$

Graphs are everywhere: Communication Networks

Graphs model communication networks

Graphs are everywhere: Communication Networks

Graphs model communication networks

Graphs are everywhere: Communication Networks

Graphs model communication networks

Graphs are everywhere: The Internet

Graphs models the Internet

Graphs are everywhere: The Internet

Graphs models the Internet

Graphs are everywhere: The Internet

Graphs models the Internet

Graphs are everywhere: The Highway Network

Graphs model highway networks

Graphs are everywhere: The Highway Network

Graphs model highway networks

Graphs are everywhere: Web Graph and Social Networks

The Web Graph and Social Networks

Graphs are everywhere: Scientific Networks

Graphs are everywhere: Circuits

What are node voltages of the following circuit?

Graphs are everywhere: Circuits

What are node voltages of the following circuit?

Graphs are everywhere: Circuits

What are node voltages of the following circuit?

Graph Analysis

Depending on the domain of graphs and applications the area is also called Network Analysis, Link Analysis, Social Network Analysis

Modeling, formulating and solving problems with graphs
Use tools from graph theory, linear algebra, algebraic graph theory, and algorithms for data analysis problems modeled with graphs

One of the earliest graph analysis: Euler argued that there is no way to tour the city of Konigsberg (now Kaliningrad) crossing each of the 7 bridges exactly once

Graph Analysis

Rather than individual data points or the global structure of the datasets
Graph Analysis focuses on pairwise interaction between objects

Allows to examine how pairwise interaction of entities in a network determine the behavior or function of an individual entity, groups of entities or the whole system

Graphs are everywhere: Six major classes of networks

Technological Networks
■ Internet (Autonomous Systems connected with BGP connections)

- Telecom Network (telephone devices connected with wires or wireless)

■ Power Grid (generating stations/users and transmission line)

Graphs are everywhere: Six major classes of networks

Information Networks

- Software (functions connected with function calls)

■ The Web Graph (webpages and hyperlinks)
■ Documents (Research papers and citations)

Graphs are everywhere: Six major classes of networks

Transportation Networks
■ Railway System (train stations and railroad tracks)

- Highway network (Intersections and road segments)
- Air Transportation (Airports and non-stop flight)

Graphs are everywhere: Six major classes of networks

Social Networks

- Social Network (people and friendship/acquaintance/coworker relation)
- Online Social Network (people and friendship or following relation)

Social Network

Online Social Nework

Graphs are everywhere: Six major classes of networks

Biological Networks

Represents interactions between biological units
ecological, evolutionary, physiological, metabolic, gene regulatory network Most genes and proteins play a role through interactions with other proteins, genes, and biomolecules

Analyzed to understand the origin and function of cellular components, treatments for diseases, determine comorbidies and risk factors

Graphs are everywhere: Six major classes of networks

Economic Networks

Business, companies, governments interacting via credit and investment, trade relations, supply chain

REVIEW article
Understanding the World Economy in Terms of Networks: A Survey of Data-Based Network Science Approaches on Economic Networks

F. Schweitzer et.al. (2009) Economic Networks: The New Challen

Graphs are everywhere

Graph	Vertices	Edges	Flow
Communications	Telephones exchanges, computers, satellites	Cables, fiber optics, microwave relays	Voice, video, packets
Circuits	Gates, registers, processors	Wires	Current
Mechanical	Joints	Rods, beams, springs	Heat, energy
Hydraulic	Reservoirs, pumping stations, lakes	Pipelines	Fluid, oil
Financial	Stocks, currency	Transactions	Money
Transportation	Airports, rail yards, street intersections	Highways, railbeds, airway routes	Freight, vehicles, passengers

Types of Graphs: Undirected Graph

A graph is
1 a set of vertices V
2 a set of edges E, subset of 2 -sets of V

$$
\begin{aligned}
& G=(V, E) \\
& V=\{a, b, c, d\} \\
& E=\{(a, b),(a, c),(b, c),(b, d)\}
\end{aligned}
$$

Types of Graphs: Undirected Graph

Let $G=(V, E)$ be a simple graph
$|V|=n$, is the order of G
$|E|$ is the size of G

What is maximum possible size of G ?

$$
\binom{n}{2}
$$

Graph Terminology: Incidence

- $e_{1}=(a, b): a$ and b are endpoints of e_{1}
- a and b are adjacent
- e_{1} is incident to a and b

Graph Terminology: Degree

Degree of a vertex is the number of edges incident on it
The number of vertices adjacent to it
Denoted by $\operatorname{deg}(v)$ or $d(v)$

$$
0 \leq \operatorname{deg}(v) \leq n-1
$$

Types of Graphs: Directed Graphs (digraphs)

Applications require different types of graphs

Directed Graphs (digraphs)

$G=(V, E)$
V is set of vertices
E is set of edges (ordered pairs)
$E \subseteq V \times V$ (ordered pairs)

irreflexive relation on V

Types of Graphs: Directed Graph

Let $G=(V, E)$ be a digraph
$|V|=n$, is the order of G
$|E|$ is the size of G

What is maximum possible size of G ?

$$
n(n-1)
$$

Graph Terminology: Degree

- $e_{1}=(d, a) \neq(a, d)$
$\square d$ is source of e_{1} and a is target of e_{1}

Graph Terminology: Degree

in-degree of a vertex is number of (directed) edges incoming into it
The number of edges with it as a target
Denoted by $\mathrm{deg}^{-}(v)$ or $d^{-}(v)$

$$
0 \leq \operatorname{deg}^{-}(v) \leq n-1
$$

Graph Terminology: Degree

out-degree of a vertex is number of (directed) edges outgoing form it
The number of edges with it as a source
Denoted by $\mathrm{deg}^{+}(v)$ or $d^{+}(v)$

$$
0 \leq \operatorname{deg}^{+}(v) \leq n-1
$$

Graph Terminology: Degree

- $\operatorname{deg}^{+}(a)=3$
- $\operatorname{deg}^{+}(c)=$?
- $\operatorname{deg}^{+}(g)=$?
$\operatorname{deg}^{-}(a)=2$
$\mathrm{deg}^{-}(c)=$?
$\operatorname{deg}^{-}(g)=$?

Graph Terminology: Neighborhood

Neighborhood of v is the set of vertices adjacent to v

$$
N(v)=\{u:(v, u) \in E\}
$$

■ Neighborhoods in digraph

- in-neighborhood
- out-neighborhood

Handshaking Lemma

Theorem (The Handshaking Lemma)

The sum of the degrees of vertices in a graph is even

Theorem (The Handshaking Lemma (A more precise version))

$$
\sum_{v} \operatorname{deg}(v)=2|E|
$$

Theorem (The Handshaking Lemma (Another version))
The number of odd degree vertices in a graph is even

Theorem (The Handshaking Lemma (Diagraph version))

$$
\sum_{v} \operatorname{deg}^{+}(v)=\sum_{v} \operatorname{deg}^{-}(v)=|E|
$$

Types of Graphs: Weighted Graphs (digraphs)

Some applications work on graphs with weights on edges

Weighted Graphs (digraphs) : $G=(V, E, w)$

- V : Set of vertices

■ E : Set of edges (directed edges)
■ w: cost/weight function: w: $E \rightarrow \mathbb{R}$
\triangleright weights could be lengths, airfare, toll, energy

Types of Graphs: Attributed Graphs

■ Each element (vertex/edge) has associated properties

- It can be directed/undirected

```
NODE (1d)
```


Graph Representation: Adjacency Matrix

Undirected Simple Graphs
$G=(V, E)$
V is set of vertices
E is set of edges
(unordered pairs (2-subsets) of V)

Directed Graphs (digraphs)
$G=(V, E)$
V is set of vertices
E is set of edges (ordered pairs of V)

Undirected Graph Representation: Adjacency Matrix

We represent undirected $G=(V, E)$ with an adjacency matrix A_{G}

■ Fix an arbitrary ordering of V

- One row for each vertex in V

■ One column for each vertex in V

$$
A_{i j}= \begin{cases}1 & \text { if }\left(v_{i}, v_{j}\right) \in E \\ 0 & \text { if }\left(v_{i}, v_{j}\right) \notin E\end{cases}
$$

$A_{G}=$| | a | b | c | d | e | f | g | h |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| b | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| c | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| d | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| e | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| f | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| g | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| h | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |

Directed Graph Representation: Adjacency Matrix

Digraph $G=(V, E)$ is a relation on V
We represent G with an adjacency matrix A_{G}

- Fix an arbitrary ordering of V
- One row for each vertex in V

■ One column for each vertex in V

$$
A_{i j}= \begin{cases}1 & \text { if }\left(v_{i}, v_{j}\right) \in E \\ 0 & \text { if }\left(v_{i}, v_{j}\right) \notin E\end{cases}
$$

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Graph Representation: Adjacency List

Represent digraph by listing neighbors of each vertex

Graph Representation: Adjacency List

Represent undirected graph by listing neighbors of each vertex

Weighted Graph Representation

Weighted Adjacency Matrix
Weighted Adjacency Lists

Graph Representation: Tradeoff

$G=(V, E), \quad|V|=n, \quad|E|=m$

- Adjacency matrix representation
- requires n^{2} bits
- Edge query $[(a, b) \in E$? $]$ requires one memory lookup
- Adjacency list representation
- requires $2 m$ integers (vertex ids) $\sim 2 m \log n$ bits
- Edge query $[(a, b) \in E$?] requires list traversal

Usually real-world graphs are very sparse $m=C \cdot n \log n$
\triangleright Adjacency lists are preferred
For dense graphs adjacency matrix is better

Graph Complement

Graph Complement

$G=(V, E) \rightarrow \bar{G}=(V, \bar{E})$

$$
(u, v) \in \bar{E} \text { iff }(u, v) \notin E
$$

■ Vertex set is the same
■ Each edge become non-edge and each non-edge becomes edge (except self-loops)

Graph Transpose

Graph Transpose

$$
G=(V, E) \rightarrow G^{T}=\left(V, E^{\prime}\right)
$$

$$
(u, v) \in E^{\prime} \text { iff }(v, u) \in E
$$

- Vertex set is the same

■ Direction/orientation of edges are reversed

Subgraph

$H=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$, if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$.
Denoted as $H \subseteq G$

G

$H_{1} \subseteq G$

$H_{2} \subseteq G$

Induced Subgraph

$H=\left(V^{\prime}, E^{\prime}\right)$ is an induced subgraph of $G=(V, E)$, if $V^{\prime} \subseteq V$ and $E^{\prime}=\left.E\right|_{V^{\prime}}$ (all edges in E with both endpoints in V^{\prime})

G

Not induced subgraph

$H_{1} \subseteq G$

Induced subgraph

$H_{2} \subseteq G$

An induced subgraph is completely determined by V^{\prime}

Spanning Subgraph

$$
\begin{aligned}
H & =\left(V^{\prime}, E^{\prime}\right) \text { is a spanning subgraph of } G=(V, E) \\
& ■ \text { if } V^{\prime}=V \text { and } \\
& \square E^{\prime} \subseteq E
\end{aligned}
$$

Denoted as $H \subseteq G$

G

$H_{1} \subseteq G$

$H_{2} \subseteq G$

Graph Connectivity

A path in a digraph is a sequence of vertices

$$
v_{1}, v_{2}, \ldots, v_{k}
$$

such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$ without repeating any vertex

Length of the path is the number of edges

Graph Connectivity

A path in a digraph is a sequence of vertices

$$
v_{1}, v_{2}, \ldots, v_{k}
$$

such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$ without repeating any vertex

Length of the path is the number of edges

Graph Connectivity

A path in a digraph is a sequence of vertices

$$
v_{1}, v_{2}, \ldots, v_{k}
$$

such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$ without repeating any vertex

Length of the path is the number of edges

Graph Connectivity

A cycle is a path that starts and ends at the same vertex

Graph Connectivity

In an undirected graph a pair of vertices u and v are connected if there is a path between u and v

- Do not mix-up this notion with that of u and v being adjacent
- If u and v are adjacent, then u is connected to v
- The converse is not necessarily true

Are c and d adjacent?
Are c and d connected?
Are a and g adjacent?
Are a and g connected?

Graph Connectivity

In an undirected graph a pair of vertices u and v are connected if there is a path between u and v

Are c and d adjacent?
Are c and d connected?

Are b and c adjacent?
Are b and c connected?
Are a and e adjacent?
Are a and e connected?
Are f and g connected?

Graph Connectivity

An undirected graph is connected if all pairs of distinct vertices are connected

Are b and c connected?
Is every pair connected?
Is the graph connected?

Are a and g connected?
Is every pair connected?
Is the graph connected?

Graph Connectivity

A connected component of G is a maximal connected subgraph (every possible connected vertex is included)

Is the graph connected?
Is the subgraph induced by $\{e, f, g\}$ connected?

Is the subgraph induced by $\{e, f, g\}$ a connected component?

Is the subgraph induced by $\{a, b, c\}$ connected?

Is the subgraph induced by $\{a, b, c\}$ a connected component?

Graph Connectivity

A connected component of G is a maximal connected subgraph (every possible connected vertex is included)

Connected components of G

Undirected Graph Connectivity

In an undirected graph u and v are connected if there is a path between u and v

An undirected graph is connected if all pairs of distinct vertices are connected

- i.e. if there is a path between every pair of distinct vertices

A connected component of G is a maximal connected subgraph (every possible connected vertex is included)

- A subset of vertices in which all pairs are connected and no other vertex can be added

Digraph Connectivity

In a digraph u and v are strongly connected, if there is a path from u to v AND a path from v to u

Is there a path from a to e ?
Is there a path from e to a ?
Are a and e strongly connected?

Is there a path from a to e ?
Is there a path from e to a ?
Are a and e strongly connected?

Digraph Connectivity

A digraph is strongly connected, if every pair of distinct vertices are strongly connected

Are c and d strongly connected?
Are all pairs strongly connected?
Is the graph strongly connected?

Are c and d strongly connected?
Are all pairs strongly connected?
Is the graph strongly connected?

Digraph Connectivity

A strongly connected component in a digraph is a maximal strongly connected subgraph (every possible strongly connected vertex is included)

Are a and b strongly connected?
Are b and e strongly connected?
Is the subgraph induced by $\{j, k, I\}$ strongly connected?

Is the subgraph induced by $\{j, k, l\}$ a strongly connected component?

Digraph Connectivity

A strongly connected component in a digraph is a maximal strongly connected subgraph (every possible strongly connected vertex is included)

Digraph Connectivity

A strongly connected component in a digraph is a maximal strongly connected subgraph (every possible strongly connected vertex is included)

Directed Graph Connectivity

In a digraph u and v are strongly connected, if there is a path from u to v AND a path from v to u

A digraph is strongly connected, if every pair of distinct vertices are strongly connected

A strongly connected component in a digraph is a maximal strongly connected subgraph (every possible strongly connected vertex is included)

Special Graphs: Trees

A tree is a connected graph with no cycles

Which ones of the following are trees?

Special Graphs: Trees

A tree is a connected graph with no cycles

Which ones of the following are trees?

Special Graphs : Forest

A forest is a eonnected graph with no cycles

Each connected component of a forest is a tree

Characterizations of Trees

A tree is a connected graph with no cycles

Theorem

A graph is a tree if and only if there is a unique path between any two vertices

Characterizations of Trees

Theorem

A graph is a tree if and only if there is a unique path between any two vertices

Proof: tree \Longrightarrow unique path

Let u and v have two "different" paths b / w them

Characterizations of Trees

Theorem

A graph is a tree if and only if there is a unique path between any two vertices

Proof: tree \Longrightarrow unique path

Let u and v have two "different" paths b / w them

This creates a cycle

Characterizations of Trees

Theorem

A graph is a tree if and only if there is a unique path between any two vertices

Proof: unique path \Longrightarrow tree
The graph is connected, as (unique) paths exist. It has no cycles. If cycle exists, then

Characterizations of Trees

Theorem

A graph is a tree if and only if there is a unique path between any two vertices

Proof: unique path \Longrightarrow tree
The graph is connected, as (unique) paths exist. It has no cycles. If cycle exists, then

we get at least two paths

Characterizations of Trees

A leaf in a graph is a vertex with degree 1

Theorem

Any tree has at least one leaf

Proof If no leaf, then every vertex has degree ≥ 2
Start a walk from any vertex. In each step take an unvisited edge.

Characterizations of Trees

A leaf in a graph is a vertex with degree 1

Theorem

Any tree has at least one leaf

Proof If no leaf, then every vertex has degree ≥ 2
Start a walk from any vertex. In each step take an unnvisited edge.

Characterizations of Trees

A leaf in a graph is a vertex with degree 1

Theorem

Any tree has at least one leaf

Proof If there is no leaf, then $\forall v \in V \operatorname{deg}(v) \geq 2$
Start a walk from any vertex. In each step take an unvisited edge

Characterizations of Trees

A leaf in a graph is a vertex with degree 1

Theorem

Any tree has at least one leaf

Proof If no leaf, then every vertex has degree ≥ 2
Start a walk from any vertex. In each step take an unvisited edge.

cannot get stuck unless a cycle exists

Characterizations of Trees

A leaf in a graph is a vertex with degree 1

Any tree has at least one leaf

Theorem

Any tree on n vertices has $n-1$ edges

Inductive Proof: Remove a leaf u

Characterizations of Trees

A leaf in a graph is a vertex with degree 1

Any tree has at least one leaf

Theorem

Any tree on n vertices has $n-1$ edges

Inductive Proof: Remove a leaf u
$T-u$ is a tree
$T-u$ has $n-2$ edges
So, T has $n-1$ edges

