Algorithms

Design Paradigm: Divide and Conquer

- Finding Rank - Merge Sort

■ Karatsuba Algorithm for Integers Multiplication
■ Counting Inversions
■ Finding Closest Pair in Plane

ImDAD ULLAH KHAN

Closest Pair of Points Problem

Given n points in a plane, find a pair of points with minimum Euclidean distance between them

For $p_{i}=\left(x_{i}, y_{i}\right)$ and $p_{j}=\left(x_{j}, y_{j}\right)$

$$
d\left(p_{i}, p_{j}\right)=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}
$$

\triangleright can be computed in $O(1)$
Applications: Computer graphics, computer vision, geographic information systems, molecular modeling, air traffic control

Closest Pair of Points Problem

Input: $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$: a set of n distinct points in \mathbb{R}^{2}
Output: A pair of points in P that minimizes $d(p, q)$
1-dimensional space:
1 Sort points
$\triangleright O(n \log n)$
2 Find closest adjacent points
$\triangleright O(n)$

2-dimensional space:

Brute force Algorithm:

FINDMIN among all $\binom{n}{2}$ pairwise distances
$\triangleright O\left(n^{2}\right)$ comparisons
Goal: $O(n \log n)$ time algorithm for 2-D version

Closest Pair: Divide \& Conquer

- Divide point set into two halves
- Find closest pair in each part recursively
\triangleright return closest of the two

Will it find closest pair?

Closest Pair: Divide \& Conquer

- Divide point set into two halves
- Find closest pair in each part recursively
- Find crossing closest pair \triangleright return closest of the three

This will find the overall closest pair

Closest Pair: Divide \& Conquer

1 Divide point set into two halves
2 Find closest pair in each part recursively
3 Find closest crossing pair
4 Return the closest of the 3 pairs

Algorithm Divide \& Conquer based Closest pair: returns distance

function Closest-Pair (P)
Split P into left and right halves, P_{L} and P_{R}
$\delta_{1} \leftarrow \operatorname{Closest-Pair}\left(P_{L}\right)$
$\delta_{2} \leftarrow \operatorname{CLOSEST}-\operatorname{Pair}\left(P_{R}\right)$
$\delta_{3} \leftarrow$ FINDMIN distance over all pairs in $P_{L} \times P_{R}$ return $\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$

Closest Pair: Divide \& Conquer

1 Divide point set into two halves
2 Find closest pair in each part recursively
3 Find closest crossing pair
4 Return the closest of the 3 pairs

Algorithm Divide \& Conquer based Closest pair: returns distance

function CLOSEST-PAIR (P)	$\triangleright T(n)$
SPLIT P into left and right halves, P_{L} and P_{R}	$\triangleright " O(n) "$
$\delta_{1} \leftarrow \operatorname{CLOSEST-PAIR}\left(P_{L}\right)$	$\triangleright T(n / 2)$
$\delta_{2} \leftarrow \operatorname{CLOSEST-PAIR}\left(P_{R}\right)$	$\triangleright T(n / 2)$
$\delta_{3} \leftarrow$ FINDMIN distance over all pairs in $P_{L} \times P_{R}$	$\triangleright n / 2 \times n / 2=O\left(n^{2}\right)$
return $\operatorname{Min}\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$	

$$
T(n)=2 T(n / 2)+O\left(n^{2}\right) \quad \Longrightarrow \quad T(n)=O\left(n^{2}\right)
$$

Closest Pair: Divide \& Conquer

Find closest crossing pair?
Consider points within δ strip of the ' x-bisecting line'
Closest crossing pair cannot be- \qquad -

-

Critical observation: closest crossing pair must be

- it not only (possibly) reduces the search space

■ but gives us a very efficient algorithm

Closest Pair: Divide \& Conquer

To find closest crossing pair $\left(p_{i}, p_{j}\right)$ such that $d\left(p_{i}, p_{j}\right)<\delta$

- Consider points within δ of the bisecting line (in both directions)
$■$ Sort points in 2δ strip by their y-coordinates, $S_{y}: s_{1}, s_{2}, \ldots$,
- Starting from lowest point $s_{1} \in S_{y}$

■ For each s_{i} only check the next 7 points in $S_{y}, s_{i+1}, s_{i+2}, \ldots, s_{i+7}$

Closest Pair: Grid Scan

■ Defn: Let s_{i} be a point in the 2δ-strip with $i^{\text {th }}$ smallest y-coordinate

■ Claim: If $|i-j| \geq 7$, then $d\left(s_{i}, s_{j}\right) \geq \delta$

- Proof:
- No two points lie in the same $\delta / 2 \times \delta / 2$ box
- Two points, at least 2 rows apart, have distance $\geq 2(\delta / 2)$

Closest Pair: Algorithm

Algorithm Divide \& Conquer strategy for Closest pair: returns distance

function ClOSEST-PAIR (P)
Compute bisecting line b_{l}
split P into left and right halves, P_{L} and P_{R}
$\delta_{1} \leftarrow \operatorname{CLOSEST}-\operatorname{PAIR}\left(P_{L}\right)$
$\delta_{2} \leftarrow \operatorname{Closest-Pair}\left(P_{R}\right)$
$\delta=\min \left(\delta_{1}, \delta_{2}\right)$
Delete all points further than δ from separation line b_{l}
SORT remaining points by y-coordinate
Scan points in y-order and compare distance between each point and its next
7 neighbors. If any of these distances is less than δ, update δ
return δ

Getting the actual pair realzing the distance δ is easy

Closest Pair: Correctness

Claim: Let p, q be pair having $d(p, q) \leq \delta$
Then:

- p and q are members of S_{y}
- Closest crossing pair must be

■ p and q are at most 7 positions apart in S_{y}

- Grid Scan is a proof of this

Closest Pair: Runtime Analysis

Running Time:

$$
T(n) \leq 2 T\left(\frac{n}{2}\right)+O(n \log n) \Longrightarrow T(n)=\underbrace{O\left(n \log ^{2} n\right)}_{\log n \text { times sorting }}
$$

Can we acheive $O(n \log n)$?

- Pre-sort all points by x and y-coordinates

■ Filter sorted lists to find the points within δ of b_{l} (no need to sort in every step to get S_{y})

$$
T(n) \leq 2 T\left(\frac{n}{2}\right)+O(n) \Longrightarrow T(n)=O(n \log n)
$$

