Design Paradigm: Divide and Conquer

- Finding Rank Merge Sort
- Karatsuba Algorithm for Integers Multiplication
- Counting Inversions
- Finding Closest Pair in Plane

Imdad ullah Khan

Closest Pair of Points Problem

Given n points in a plane, find a pair of points with minimum Euclidean distance between them

For
$$p_i = (x_i, y_i)$$
 and $p_j = (x_j, y_j)$

$$d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

 \triangleright can be computed in O(1)

Applications: Computer graphics, computer vision, geographic information systems, molecular modeling, air traffic control

Closest Pair of Points Problem

Input: $P = \{p_1, p_2, \dots, p_n\}$: a set of n distinct points in \mathbb{R}^2

Output: A pair of points in P that minimizes d(p,q)

1-dimensional space:

- **1** Sort points $\triangleright O(n \log n)$
- **2** Find closest adjacent points $\triangleright O(n)$

2-dimensional space:

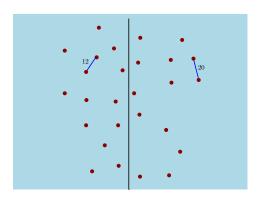
Brute force Algorithm:

FINDMIN among all $\binom{n}{2}$ pairwise distances

 $\triangleright O(n^2)$ comparisons

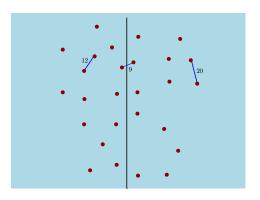
Goal: $O(n \log n)$ time algorithm for 2-D version

- Divide point set into two halves
- Find closest pair in each part recursively preturn closest of the two



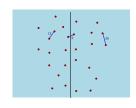
Will it find closest pair?

- Divide point set into two halves
- Find closest pair in each part recursively
- Find crossing closest pair



This will find the overall closest pair

- Divide point set into two halves
- Find closest pair in each part recursively
- Find closest crossing pair
- 4 Return the closest of the 3 pairs



Algorithm Divide & Conquer based Closest pair: returns distance

function CLOSEST-PAIR(P)

SPLIT P into left and right halves, P_L and P_R

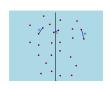
$$\delta_1 \leftarrow \text{CLOSEST-PAIR}(P_L)$$

$$\delta_2 \leftarrow \text{CLOSEST-PAIR}(P_R)$$

$$\delta_3 \leftarrow \text{FINDMIN}$$
 distance over all pairs in $P_L \times P_R$

return
$$\min\{\delta_1, \delta_2, \delta_3\}$$

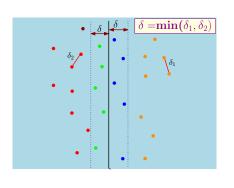
- 1 Divide point set into two halves
- 2 Find closest pair in each part recursively
- 3 Find closest crossing pair
- 4 Return the closest of the 3 pairs



Algorithm Divide & Conquer based Closest pair: returns distance

function CLOSEST-PAIR (P)	$\triangleright T(n)$
SPLIT P into left and right halves, P_L and P_R	> "O(n)"
$\delta_1 \leftarrow \text{closest-pair}(P_L)$	ightharpoonup T(n/2)
$\delta_2 \leftarrow \text{CLOSEST-PAIR}(P_R)$	ightharpoonup T(n/2)
$\delta_3 \leftarrow$ FINDMIN distance over all pairs in $P_L imes P_R$	$> n/2 \times n/2 = O(n^2)$
return $\min\{\delta_1,\delta_2,\delta_3\}$	

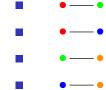
$$T(n) = 2T(n/2) + O(n^2) \implies T(n) = O(n^2)$$



Find closest crossing pair?

Consider points within δ strip of the 'x-bisecting line'

Closest crossing pair cannot be

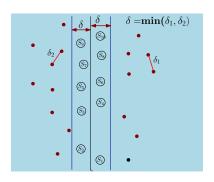


Critical observation: closest crossing pair must be

- it not only (possibly) reduces the search space
- but gives us a very efficient algorithm

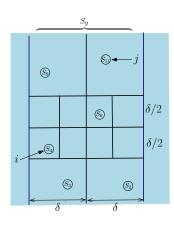
To find closest crossing pair (p_i, p_j) such that $d(p_i, p_j) < \delta$

- lacksquare Consider points within δ of the bisecting line (in both directions)
- Sort points in 2δ strip by their y-coordinates, $S_v: s_1, s_2, \ldots$
- lacksquare Starting from lowest point $s_1 \in S_y$
- For each s_i only check the next 7 points in S_y , $s_{i+1}, s_{i+2}, \ldots, s_{i+7}$



Closest Pair: Grid Scan

- **Defn:** Let s_i be a point in the 2δ -strip with i^{th} smallest y-coordinate
- Claim: If $|i-j| \ge 7$, then $d(s_i, s_i) \ge \delta$
- Proof:
 - No two points lie in the same $\delta/2 \times \delta/2$ box
 - Two points, at least 2 rows apart, have distance $\geq 2(\delta/2)$



Closest Pair: Algorithm

Algorithm Divide & Conquer strategy for Closest pair: returns distance

function CLOSEST-PAIR(P)

Compute bisecting line b_l

SPLIT P into left and right halves, P_I and P_R

 $\delta_1 \leftarrow \text{CLOSEST-PAIR}(P_L)$

 $\delta_2 \leftarrow \text{CLOSEST-PAIR}(P_R)$

 $\delta = \min(\delta_1, \delta_2)$

Delete all points further than δ from separation line b_l

SORT remaining points by y-coordinate

Scan points in y-order and compare distance between each point and its next

7 neighbors. If any of these distances is less than $\delta,$ update δ

return δ

Getting the actual pair realzing the distance δ is easy

Closest Pair: Correctness

Claim: Let p, q be pair having $d(p, q) \leq \delta$

Then:

- \blacksquare p and q are members of S_y
 - Closest crossing pair must be — •
- **p** and q are at most 7 positions apart in S_y
 - Grid Scan is a proof of this

Closest Pair: Runtime Analysis

Running Time:

$$T(n) \le 2T\left(\frac{n}{2}\right) + O(n\log n) \implies T(n) = \underbrace{O(n\log^2 n)}_{\log n \text{ times sorting}}$$

Can we acheive $O(n \log n)$?

- Pre-sort all points by x and y-coordinates
- Filter sorted lists to find the points within δ of b_l (no need to sort in every step to get S_y)

$$T(n) \leq 2T\left(\frac{n}{2}\right) + O(n) \implies T(n) = O(n \log n)$$