
Algorithms

Design Paradigm: Divide and Conquer

Finding Rank - Merge Sort

Karatsuba Algorithm for Integers Multiplication

Counting Inversions

Finding Closest Pair in Plane

Imdad ullah Khan

Imdad ullah Khan (LUMS) Divide & Conquer 1 / 14

Inversions

Inversions in an array A of numbers are the out-of-order pairs

Pairs of indices (i , j) such that i < j and A[i] > A[j]

A =
1 2 3 4 5 6 7 8

5 4 6 9 2 7 5 8

Inversions:
{
(1, 2), (1, 5), (2, 5), (3, 5), (3, 7), (4, 5), (4, 6), (4, 7), (4, 8), (6, 7)

}

Crossing Points (black dots) represent inversions

2 4 5 5 6 7 8 9

5 4 6 9 2 7 5 8

Sorted Array

Input Array

Imdad ullah Khan (LUMS) Divide & Conquer 2 / 14

Inversions

Inversions in an array A of numbers are the out-of-order pairs

Pairs of indices (i , j) such that i < j and A[i] > A[j]

Number of inversions is a measure of (dis)sorted-ness of array

▷ An array is sorted if there are zero inversions

Recall which sorting algorithm is better when A has few inversions?

Applications

Collaborative filtering

Rank voting theory

Imdad ullah Khan (LUMS) Divide & Conquer 3 / 14

Recommendation Systems

Items

S
e
a
rch

R
e
co

m
m
e
n
d
a
ti
o
n
s

Products, news, friends,

websites,movies, courses

The Web, they say, is leaving the era of search and entering one of
discovery. What’s the difference? Search is what you do when you’re
looking for something. Discovery is when something wonderful that
you didn’t know existed, or didn’t know how to ask for, finds you.

J. O’Brien, Nov 20, 2006 The race to create a ’smart’ Google

Imdad ullah Khan (LUMS) Divide & Conquer 4 / 14

Recommendation Systems

Retailers cannot shelve everything

▷ Online retailers and digital content providers have millions of products

P
o
p
u
la
ir
ty

The Hits

The Long Tail

Products

Create demand for these products

Near zero-cost dissemination of information about products

Necessitates information filtering (customization and recommendation)

Imdad ullah Khan (LUMS) Divide & Conquer 5 / 14

Recommendation Systems

Filtering can be

Hand-Curated: ▷ Chef’s specials, editor’s picks, favorites

Simple aggregates: ▷ Top 10, Trending, Recent uploads

Customized to individual users: ▷ Recommendation Systems

Imdad ullah Khan (LUMS) Divide & Conquer 6 / 14

Recommendation Systems: Problem Formulation

n users - {u1, . . . , un} and m items - {p1, . . . , pm}

Utility Matrix U: n ×m matrix row/column for each user/item

U(i , j) : rating of user i for item j

?

U(i , j) could be

0− 5 stars

∈ [0, 1]

∈ {0, 1}

If prediction for U(i , j) is high, then recommend product j to user i

Imdad ullah Khan (LUMS) Divide & Conquer 7 / 14

User-User Collaborative Filtering

Collaboratively filter (personalize) ratings using only the rating matrix U

User i will ‘like’ item j , if other users similar to i rate j higher

highly similar

(rating based)

low similarity

likes

likes

Collaborative Filtering

u1

u3

u2
pj

will probably like

lik
es

Imdad ullah Khan (LUMS) Divide & Conquer 8 / 14

Inversions: Application in Collaborative Filtering

Pairs of indices (i , j) such that i < j and A[i] > A[j]

Inversions is a measure of distance/similarity between two users

Sort row of ux by ratings of uy

Inversions in ux row is distance between ux and uy

u1 :
p1 p2 p3 p4 p5 p6 p7

2 8 6 1 9 7 3

u2 :
p1 p2 p3 p4 p5 p6 p7

7 4 1 9 2 1 8

u3 :
p1 p2 p3 p4 p5 p6 p7

2 7 6 1 9 8 2

u′
2 :

p4 p1 p7 p3 p6 p2 p5

9 7 8 1 1 4 2

u′
3 :

p4 p1 p7 p3 p6 p2 p5

1 2 2 6 8 7 9

Is u2 closer to u1 or u3? Does u′2 have more inversions or u′3?

Imdad ullah Khan (LUMS) Divide & Conquer 9 / 14

Counting Inversions: Algorithm

Pairs of indices (i , j) such that i < j and A[i] > A[j]

Input: An array A of n numbers
Output: Number of inversions in A

Algorithm Counting Inversions - Brute force algorithm

count ← 0
for i = 1 to n do

for j = i + 1 to n do
if A[i] > A[j] then
count ← count + 1

Correct by definition(n
2

)
index pairs, number of comparisons is O(n2)

Can we do better?

Imdad ullah Khan (LUMS) Divide & Conquer 10 / 14

Counting Inversions: Divide & Conquer

72 3 8 10 9 12 18 15 255 4

Divide the list into two halves

79 12 18 15 252 3 8 105 4

Recursively count inversions in each half

79 12 18 15 252 3 8 105 4

︸ ︷︷ ︸
Left−Left =8−5, 8−4, 5−4

︸ ︷︷ ︸
Right−Right : 9−7, 12−7, 18−15

Count inversions where ai and aj are in different halves

2 3 8 105 4 79 12 18 15 25

Left-Right Inversions

Return total inversions count

Imdad ullah Khan (LUMS) Divide & Conquer 11 / 14

Counting Inversions: Divide & Conquer

Divide the array into left and right halves

Find left-left and right-right inversions recursively

How to find left-right inversions?

How many L-R inversions a given element x ∈ L is involved in?

Exactly the number of elements in R smaller than x , rankR(x)

Finding L-R inversions is equivalent to finding ranks of all elements of L in R

2 3 8 105 4 79 12 18 15 25

Left-Right Inversions

rankR(8) = 1 rankR(10) = 2

L and R sorted =⇒ can find rankR(x) ∀ x ∈ L (L-R inversions) in n steps

sorting L and R removes LL and RR inversions, LR inversions remain intact

Solution: First count LL and RR inversions, then sort L and R

Imdad ullah Khan (LUMS) Divide & Conquer 12 / 14

Counting Inversions: Divide & Conquer

Algorithm Counting Inversions

function countinversions(A) ▷ returns both sorted A and number of
inversion in A

if |A| = 1 then
return (A, 0)

L← A[1, . . . , n/2]

R ← A[n/2 + 1, . . . , n]

(sortedL, LLinv)← countinversions(L)

(sortedR,RRinv)← countinversions(R)

LRinv ← sum(findranks(sortedL, sortedR)) ▷ n steps

return (merge(sortedL, sortedR), LLinv + RRinv + LRinv) ▷ n steps

Imdad ullah Khan (LUMS) Divide & Conquer 13 / 14

Counting Inversions: Recurrence Relation

The recurrence for runtime T (n) on input size n is:

T (n) =

2T
(
n
2

)
+ 2n if n ≥ 2

1 else

T (n) = 2n log(n)

much better than O(n2)

Imdad ullah Khan (LUMS) Divide & Conquer 14 / 14

