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Design Paradigm: Divide and Conquer

Finding Rank - Merge Sort

Karatsuba Algorithm for Integers Multiplication

Counting Inversions

Finding Closest Pair in Plane
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Algorithm Design Paradigm: Divide and Conquer

Break a problem into several subproblems

Solve each part recursively

Combine solutions of sub-problems into overall solution

source: Khan Academy
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RankA(x)

A : is an array of n integers

Rank of x in A is the number of elements in A smaller than x

RankA(x) =
∣∣{a ∈ A : a < x

}∣∣
A = 5 4 6 9 2 7 5 8

RankA(5) = 2

RankA(3) = 1

RankA(1) = 0

RankA(−10) = 0

RankA (min(A)) = 0

RankA (max(A)) = n − freq of max
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Compute RankA(x)

Input: A sorted array A of n distinct integers and x ∈ Z
Output: RankA(x)

extended binary search for x in A

Takes log n comparisons

Linear scan A and count A[i ] < x

Takes n comparisons
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Compute Rank of 2 numbers

Input: A sorted array A of n distinct integers and x < y ∈ Z
Output: RankA(x), RankA(y)

extended binary search for x and y in A

Takes 2 log n comparisons (worst case)

RankA(x) = t → next extended binary search for y in A[t . . . n]

▷ log n + log(n − t)

▷ Worst case: RankA(x) = 0

Linear scan A and count A[i ] < x and A[i ] < y

Takes 2n comparisons
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Compute Rank of 3 numbers

Input: A sorted array A of n distinct integers and x1 < x2 < x3 ∈ Z
Output: RankA(x1), RankA(x2), RankA(x3)

Three extended binary search for x1, x2, x3 in A

Takes 3 log n comparisons (worst case)

Linear scan A: count A[i ] < x1, A[i ] < x2, A[i ] ≤ x3

Takes 3n comparisons
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Compute Rank of n numbers

Input: A sorted array A of n distinct integers and x1 < x2 < . . . , xn ∈ Z
Output: RankA(xi ) , for 1 ≤ i ≤ n

n extended binary search for each xi ∈ X in A

Takes n log n comparisons (worst case)

Linear scan A: count A[i ] < xj for 1 ≤ j ≤ n

Takes n2 comparison

RankA(x1) = t =⇒ for x2 continue scan from A[t + 1]

▷ Because A[1 . . . t] < x1 =⇒ A[1 . . . t] < x2

Takes 2n comparisons (worst case)
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Compute Rank of n numbers

Input: A sorted array A of n distinct integers and x1 < x2 < . . . , xn ∈ Z
Output: RankA(xi ) , for 1 ≤ i ≤ n

RankA(x1) = t =⇒ for x2 continue scan from A[t + 1]

▷ ∵ A[1 . . . t] < x1 =⇒ A[1 . . . t] < x2

Takes 2n comparisons (worst case)

Algorithm Find Ranks

j ← 1 ▷ index of current xj
r ← 0 ▷ running rank
for i = 1 to n do

if A[i ] < xj then
r ← r + 1

else
rankA(xj)← r

j ← j + 1
i ← i − 1 ▷ need to repeat this i
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Merge

Input: Sorted array A and sorted array B of n distinct integers

Output: Sorted C = A ∪ B, |C | = 2n

A = 2 4 7 10 12 B = 3 9 14 15 18

C = 2 3 4 7 9 10 12 14 15 18

The brute-force algorithm (just implements the definition)

Make C = A ∪ B and sort C ▷ O(n2) comparisons

Can make use of the findrank algorithm

Imdad ullah Khan (LUMS) Divide & Conquer 9 / 13



Merge

Input: Sorted array A and sorted array B of n distinct integers

Output: Sorted C = A ∪ B, |C | = 2n

A = 2 4 7 10 12 B = 3 9 14 15 18

C = 2 3 4 7 9 10 12 14 15 18

What will be index of B[1] in C?

In C , elements of A smaller than B[1] are to the left of B[1]

Index of B[1] in C is rankA
(
B[1]

)
+ 1

Index of B[2] in C is rankA
(
B[2]

)
+ 2

Index of B[3] in C is rankA
(
B[3]

)
+ 3

C = 3 9 14

rankA(b1) + 1 rankA(b2) + 2 rankA(b3) + 3

Merging is just findrank ▷ Runtime: 2n comparisons
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Merge Sort

Input: Array A of n distinct integers

Output: Sorted A

Divide A into left and right halves

Recursively sort the left and right halves

Merge the sorted halves

Algorithm Merge Sort

function mergesort(A, st, end )
n← end − st + 1
if n = 1 then

return A
else

L ← mergesort(A, st, n/2)

R ← mergesort(A, n/2 + 1, end)

return merge(L,R)
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Merge Sort: Runtime

Input: Array A of n distinct integers

Output: Sorted A

Algorithm Merge Sort

function mergesort(A, st, end )
n← end − st + 1
if n = 1 then

return A
else

L ← mergesort(A, st, n/2)
R ← mergesort(A, n/2 + 1, end)
return merge(L,R)

T (n) : runtime of mergesort(A, n)
T (n) =

{
2T (n/2) + n if n > 1

1 else

This evaluates to O(n log n) ▷ matches the lower bound
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Divide and Conquer Design Paradigm

Break a problem into several parts (Divide Part)

Solve each part recursively

Combine sub-problems solutions into overall solution (Combine Part)

Sometimes divide part is straight-forward (e.g. Mergesort)

Sometimes divide part is difficult and combine part is straight-forward
(Quicksort)

Runtime of divide and conquer based algorithm is modeled by a
recurrence relation

Number of operations per call (work for division and combine) plus
the number of calls (on certain problem sizes)
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