Algorithms

Design Paradigm: Divide and Conquer

m Finding Rank - Merge Sort
m Karatsuba Algorithm for Integers Multiplication
m Counting Inversions

m Finding Closest Pair in Plane

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 1/13

Algorithm Design Paradigm: Divide and Conquer

m Break a problem into several subproblems
m Solve each part recursively

m Combine solutions of sub-problems into overall solution

solve
conguer

combine combine

source: Khan Academy

IMDAD ULLAH KHAN Divide & Conquer

Ranka(x)

A : is an array of n integers

Rank of x in A is the number of elements in A smaller than x

Ranka(x |{a€A a<x}‘

(5]4l6f9f2]7]5]8]

m Ranka(5) = 2

m Ranka(3) = 1

m Ranka(1l) = 0
Ranka(—10) = 0
(min(A)) =
(

m Ranka(max(A)) = n— freq of max

|
iy
>

S

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 3/13

Compute Ranka(x)

Input: A sorted array A of n distinct integers and x € Z
Output: Ranka(x)

® EXTENDED BINARY SEARCH for x in A

Takes log n comparisons

m Linear scan A and count A[i] < x

Takes n comparisons

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 4/13

Compute Rank of 2 numbers

Input: A sorted array A of n distinct integers and x < y € Z
Output: Ranka(x), Ranka(y)

B EXTENDED BINARY SEARCH for x and y in A
Takes 2 log n comparisons (worst case)
Ranka(x) = t — next EXTENDED BINARY SEARCH for y in A[t...n]
> log n + log(n — t)
> Worst case: Ranka(x) =0

m Linear scan A and count A[i] < x and A[i] <y

Takes 2n comparisons

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 5/13

Compute Rank of 3 numbers

Input: A sorted array A of n distinct integers and x; < xo < x3 € Z
Output: RankA(xl), RankA(Xz), RankA(X3)

m Three EXTENDED BINARY SEARCH for xj, xp, X3 in A

Takes 3 log n comparisons (worst case)

m Linear scan A: count A[i] < x1, A[i] < x2, Al[i] < x3

Takes 3n comparisons

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 6/13

Compute Rank of n numbers

Input: A sorted array A of n distinct integers and x3 < x0 < ...,x, € Z
Output: Ranka(x;) ,for1<i<n

B N EXTENDED BINARY SEARCH for each x; € X in A

Takes nlog n comparisons (worst case)

m Linear scan A: count A[i] < xj for 1 <j <n

Takes n® comparison

m Ranka(x1) =t = for x2 continue scan from A[t + 1]
> Because A[l...t] <x3 = A[l...t] < x

Takes 2n comparisons (worst case)

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 7/13

Compute Rank of n numbers

Input: A sorted array A of n distinct integers and x3 < x0 < ...,x, € Z
Output: Ranka(x;) , for1<i<n
m Ranka(x1) =t = for x2 continue scan from A[t + 1]
> A[l...t] < X1 — A[l...t] < X2

Takes 2n comparisons (worst case)

Algorithm Find Ranks
j+<1 > index of current x;
r<20 > running rank
for i=1tondo
if A[i] < x; then
r<—r+1
else
ranka(xj) < r
j—Jj+1
i+—i—1 > need to repeat this /

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 8/13

Merge

Input: Sorted array A and sorted array B of n distinct integers
Output: Sorted C =AUB, |C| =2n

A=[2[4][7]10]12] B=[3]9]14]15] 18|

C= [2]|3]4]7]9]10]12][14]15] 18]

The brute-force algorithm (just implements the definition)

Make C = AU B and sort C > O(n?) comparisons

Can make use of the FINDRANK algorithm

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 9/13

Merge

Input: Sorted array A and sorted array B of n distinct integers
Output: Sorted C =AUB, |C| =2n

A=[2 4] 710]12] B=[3][9] 141518

C= [2[3[4[7[9 [0 121415 18]

What will be index of B[1] in C?
In C, elements of A smaller than B[1] are to the left of B[1]

m Index of B[1] in C is ranka(B[1]) + 1
m Index of B[2] in C is ranka(B[2]) + 2 o ‘;}‘ | ‘;}‘ | ‘1(4}‘ |
m Index of B[3] in C is ranka(B[3]) + 3

Merging is just findrank > Runtime: 2n comparisons

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 10/13

Merge Sort

Input: Array A of n distinct integers
Output: Sorted A

m Divide A into left and right halves

m Recursively sort the left and right halves

m Merge the sorted halves

Algorithm Merge Sort

function MERGESORT(A, st, end)
n<end —st+1

if n=1 then
return A
else

L < MERGESORT(A, st, n/2)
R < MERGESORT(A, 7/2 + 1, end)
return MERGE(L, R)

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 11/13

Merge Sort: Runtime

Input: Array A of n distinct integers
Output: Sorted A

Algorithm Merge Sort

function MERGESORT(A, st, end)
n<end—st+1

if n=1 then
return A
else

L <+ MERGESORT(A, st, 7/2)
R < MERGESORT(A, /2 + 1, end)
return MERGE(L, R)

1 else

T(n) : runtime of MERGESORT(A, n) T(n) = {2T(n/2) +n ifn>1

This evaluates to O(nlog n)

IMDAD ULLAH KHAN (LUMS) Divide & Conquer

> matches the lower bound

12/13

Divide and Conquer Design Paradigm

m Break a problem into several parts (Divide Part)

m Solve each part recursively

m Combine sub-problems solutions into overall solution (Combine Part)
m Sometimes divide part is straight-forward (e.g. Mergesort)

m Sometimes divide part is difficult and combine part is straight-forward
(Quicksort)

m Runtime of divide and conquer based algorithm is modeled by a
recurrence relation

m Number of operations per call (work for division and combine) plus
the number of calls (on certain problem sizes)

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 13/13

