Searching and Sorting

- Linear and Binary Search
- Order Statistics MIN and MAX
- Comparison Based Sorting Algorithms
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
- Lower Bound on Comparison based sorting
- Non-Comparison Based Sorting Integers Sorting
 - Counting Sort
 - Radix Sort

Imdad ullah Khan

Theorem: Any comparison-based algorithm requires $\Omega(n \log n)$ comparisons to sort *n* elements

Comparison Based Algorithm

- Only access to elements is via pairwise comparisons
- No direct manipulations allowed
- No decision based on values of elements or number of bits/digits

Non-Comparison Based Algorithm

- Allowed to use value of the input, e.g. maximum of the array
- Works for integers only
- Runtime typically depends on value of the input (not size of input)

Called *pseudo-polynomial* time algorithms

- Suppose A has n distinct positive integers between 1 and K
- Counting Sort essentially populates an 'attendance register' C
- Then outputs the elements present by scanning *C* in increasing order

- Suppose A has n distinct positive integers between 1 and K
- Counting Sort essentially populates an 'attendance register' C
- Then outputs the elements present by scanning *C* in increasing order

- Suppose A has n distinct positive integers between 1 and K
- Counting Sort essentially populates an 'attendance register' C
- Then outputs the elements present by scanning *C* in increasing order

- Suppose A has n distinct positive integers between 1 and K
- Counting Sort essentially populates an 'attendance register' C
- Then outputs the elements present by scanning *C* in increasing order

Algorithm COUNTING-SORT (A, K)	
$\mathcal{C} \leftarrow \operatorname{zeros}(\mathcal{K})$	\triangleright Initialize C to empty register of size K
for $j \leftarrow 1$ to n do	
$C[A[j]] \leftarrow 1$	
for $i \leftarrow 1$ to K do	
if $C[i] = 1$ then	
PRINT(i)	

- Runtime is O(n + K), O(n) for first loop, O(K) for second loop
- The algorithm uses the value of K and runtime depends on it too

What if numbers are negative? How about repeated elements?

Negative numbers are handled by shifting (and re-shifting the output)

For repeated elements, store frequencies in C and output each element the number of times it occurs

Algorithm COUNTING-SORT (A, K)	
$\mathcal{C} \leftarrow \operatorname{zeros}(\mathcal{K})$	\triangleright Initialize C to empty register of size K
for $j \leftarrow 1$ to n do	
$C[A[j]] \gets C[A[j]] + 1$	
for $i \leftarrow 1$ to K do	
for $j \leftarrow 1$ to $C[i]$ do	
PRINT(i)	

Runtime is still O(n+K)

A sorting algorithm is called stable, if repeated elements are output in the original order

Let B be the array in which elements would be placed in sorted order

Algorithm STABLE-COUNTING-SORT(A, B, K)

- Suppose A has n integers, each of d digits (same number of digits)
- From least significant digit to most significant digit
- Stable Sort the integers by the *i*th digits

$$A = \{385, 400, 1, 129, 10\}$$

3	8	5
4	0	0
0	0	1
1	2	9
0	1	0

- Suppose A has n integers, each of d digits (same number of digits)
- From least significant digit to most significant digit
- Stable Sort the integers by the *i*th digits

$$A = \{385, 400, 1, 129, 10\}$$

- Suppose A has n integers, each of d digits (same number of digits)
- From least significant digit to most significant digit
- Stable Sort the integers by the *i*th digits

$$A = \{385, 400, 1, 129, 10\}$$

- Suppose A has n integers, each of d digits (same number of digits)
- From least significant digit to most significant digit
- Stable Sort the integers by the *i*th digits

$$A = \{385, 400, 1, 129, 10\}$$

- Suppose A has n integers, each of d digits (same number of digits)
- From least significant digit to most significant digit
- Stable Sort the integers by the *i*th digits

AlgorithmRADIX-SORT(A, d)for $i \leftarrow 1$ to d doUse STABLE-COUNTING-SORT to sort A by digit i

- Let [1 k] be the range of values a 'digit' can take
- Runtime is O(d * (n + k))

Is RADIX-SORT stable? Yes.

What if the unstable version of $\operatorname{COUNTING-SORT}$ was used instead?

Algorithm	Worst Case Runtime
Bubble Sort	<i>O</i> (<i>n</i> ²)
Selection Sort	<i>O</i> (<i>n</i> ²)
Insertion Sort	<i>O</i> (<i>n</i> ²)
Count Sort	O(n+k)
Radix Sort	O(d*(n+k))