Algorithms

Searching and Sorting

- Linear and Binary Search
- Order Statistics - min and max

■ Comparison Based Sorting Algorithms

- Selection Sort
- Bubble Sort
- Insertion Sort

■ Lower Bound on Comparison based sorting

- Non-Comparison Based Sorting - Integers Sorting
- Counting Sort
- Radix Sort

Imdad ullah Khan

Lower Bound on Sorting Algorithms

Theorem: Any comparison-based algorithm requires $\Omega(n \log n)$ comparisons to sort n elements

Comparison Based Algorithm

- Only access to elements is via pairwise comparisons
- No direct manipulations allowed

■ No decision based on values of elements or number of bits/digits

Linear Time Sorting Algorithms

Non-Comparison Based Algorithm

■ Allowed to use value of the input, e.g. maximum of the array

- Works for integers only
- Runtime typically depends on value of the input (not size of input)
\triangleright Called pseudo-polynomial time algorithms

Counting Sort

■ Suppose A has n distinct positive integers between 1 and K

- Counting Sort essentially populates an 'attendance register' C

■ Then outputs the elements present by scanning C in increasing order

$$
\begin{aligned}
& \begin{array}{c|c|c|c|c|c|c|c|c|c|}
\text { initially empty } \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \text { Index } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array} \\
& A \rightarrow \begin{array}{|l|l|l|l|l|l|}
\hline 8 & 9 & 3 & 4 & 2 & 7 \\
\hline
\end{array} \quad K=9
\end{aligned}
$$

Counting Sort

■ Suppose A has n distinct positive integers between 1 and K

- Counting Sort essentially populates an 'attendance register' C

■ Then outputs the elements present by scanning C in increasing order

Counting Sort

■ Suppose A has n distinct positive integers between 1 and K

- Counting Sort essentially populates an 'attendance register' C

■ Then outputs the elements present by scanning C in increasing order

Counting Sort

■ Suppose A has n distinct positive integers between 1 and K

- Counting Sort essentially populates an 'attendance register' C
- Then outputs the elements present by scanning C in increasing order

Algorithm COUNTING-SORT (A, K)

```
\(C \leftarrow \operatorname{zeros}(K) \quad \triangleright\) Initialize \(C\) to empty register of size \(K\)
for \(j \leftarrow 1\) to \(n\) do
    \(C[A[j]] \leftarrow 1\)
    for \(i \leftarrow 1\) to \(K\) do
    if \(C[i]=1\) then
        PRINT( \(i\) )
```

- Runtime is $O(n+K), O(n)$ for first loop, $O(K)$ for second loop
- The algorithm uses the value of K and runtime depends on it too

Counting Sort

Negative numbers are handled by shifting (and re-shifting the output)
For repeated elements, store frequencies in C and output each element the number of times it occurs

Algorithm Counting-Sort (A, K)

```
\(C \leftarrow \operatorname{zeros}(K)\)
\(\triangleright\) Initialize \(C\) to empty register of size \(K\)
for \(j \leftarrow 1\) to \(n\) do
        \(C[A[j]] \leftarrow C[A[j]]+1\)
    for \(i \leftarrow 1\) to \(K\) do
        for \(j \leftarrow 1\) to \(C[i]\) do
        PRINT \((i)\)
```

Runtime is still $O(n+K)$

Counting Sort: Stable Version

A sorting algorithm is called stable, if repeated elements are output in the original order

Let B be the array in which elements would be placed in sorted order

```
Algorithm stable-counting-Sort \((A, B, K)\)
    \(C \leftarrow \operatorname{zeros}(K) \quad \triangleright\) Initialize \(C\) to empty register of size \(K\)
    for \(j \leftarrow 1\) to \(n\) do
        \(C[A[j]] \leftarrow C[A[j]]+1\)
    for \(i \leftarrow 1\) to \(K\) do
        \(C[i] \leftarrow C[i]+C[i-1] \quad \triangleright\) Modify \(C\) to keep cumulative counts
    for \(j \leftarrow n\) to 1 do
        \(B[C[A[j]]] \leftarrow A[j]\)
        \(C[A[j]] \leftarrow C[A[j]]-1\)
```


Counting Sort: Stable Version

$$
\begin{aligned}
& C \begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c}
\hline= & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 8 & 9 & 3 & 4 & 2 & 7 & 3 & 13 & 7 & 13 \\
\hline
\end{array} \\
& C=\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c}
\hline 0 & 1 & 2 & 1 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 & 2 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13
\end{array} \\
& C=\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c}
\hline 0 & 1 & 3 & 4 & 4 & 4 & 6 & 7 & 8 & 0 & 0 & 0 & 10 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13
\end{array}
\end{aligned}
$$

Counting Sort: Stable Version

Counting Sort: Stable Version

Counting Sort: Stable Version

Radix Sort

- Suppose A has n integers, each of d digits (same number of digits)
- From least significant digit to most significant digit

■ Stable Sort the integers by the ith digits

$$
A=\{385,400,1,129,10\}
$$

3	8	5
4	0	0
0	0	1
1	2	9
0	1	0

Radix Sort

- Suppose A has n integers, each of d digits (same number of digits)

■ From least significant digit to most significant digit
■ Stable Sort the integers by the ith digits

$$
A=\{385,400,1,129,10\}
$$

Pass 1

3	8	5
4	0	0
0	0	1
1	2	9
0	1	0

4	0	0
0	1	0
0	0	1
3	8	5
1	2	9

Radix Sort

- Suppose A has n integers, each of d digits (same number of digits)
- From least significant digit to most significant digit

■ Stable Sort the integers by the ith digits

$$
A=\{385,400,1,129,10\}
$$

			Pass 1			Pass 2		
					\downarrow		\downarrow	
3	8	5	4	0	0	4	0	0
4	0	0	0	1	0	0	0	1
0	0	1	0	0	1	0	1	0
1	2	9	3	8	5	1	2	9
0	1	0	1	2	9	3	8	5

Radix Sort

- Suppose A has n integers, each of d digits (same number of digits)

■ From least significant digit to most significant digit
■ Stable Sort the integers by the ith digits

$$
A=\{385,400,1,129,10\}
$$

Pass 1

3	8	5
4	0	0
0	0	1
1	2	9
0	1	0

4	0	0
0	1	0
0	0	1
3	8	5
1	2	9

\downarrow		
4	0	0
0	0	1
0	1	0
1	2	9
3	8	5

Pass 3

0	0	1
0	1	0
1	2	9
3	8	5
4	0	0

Radix Sort

- Suppose A has n integers, each of d digits (same number of digits)

■ From least significant digit to most significant digit
■ Stable Sort the integers by the ith digits

Algorithm RADIX-SORT(A, d)

for $i \leftarrow 1$ to d do

Use Stable-Counting-Sort to sort A by digit i

- Let $[1-k$] be the range of values a 'digit' can take
- Runtime is $O(d *(n+k))$

Is Radix-Sort stable? Yes.

What if the unstable version of Counting-Sort was used instead?

Sorting Algorithms

Algorithm	Worst Case Runtime
Bubble Sort	$O\left(n^{2}\right)$
Selection Sort	$O\left(n^{2}\right)$
Insertion Sort	$O\left(n^{2}\right)$
Count Sort	$O(n+k)$
Radix Sort	$O(d *(n+k))$

