Searching and Sorting

- Linear and Binary Search
- Order Statistics MIN and MAX
- Comparison Based Sorting Algorithms
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
- Lower Bound on Comparison based sorting
- Non-Comparison Based Sorting Integers Sorting
 - Counting Sort
 - Radix Sort

Imdad ullah Khan

Trivial lower bound: Since any element must be part of at least one comparison, there must be at least $n/2 = \Omega(n)$ comparisons

Theorem: Any comparison-based algorithm requires $\Omega(n \log n)$ comparisons to sort *n* elements

- This means that $\Omega(n \log n)$ comparisons are necessary (lower bound)
- We know that O(n log n) comparisons are sufficient (upper bound) -INSERTION-SORT with BINARY-SEARCH
- Proving this theorem is non-trivial, as one has to argue about all known and unknown sorting algorithms

Theorem: Any comparison-based algorithm requires $\Omega(n \log n)$ comparisons to sort *n* elements

Assumptions:

All elements (numbers) are distinct

▷ only a technicality

- Comparison Based Algorithm
 - Only access to elements is via pairwise comparisons
 - No direct manipulations allowed
 - No decision based on values of elements or number of bits/digits
- A comparison is of the form A[i] < A[j] (other forms are equivalent)

Theorem: Any comparison-based algorithm requires $\Omega(n \log n)$ comparisons to sort *n* elements

The input is some permutation of the set $A = \{a_1, a_2, \dots, a_n\}$

The output of sorting algorithm is a permutation $a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}$

 \triangleright think of $\pi(i)$ as index of *i*th order statistics of A

Key observation is that for each of the possible n! outputs, π , there exists a unique input, for which π is the only right output

Think about this one-to-one correspondence and keep thinking until it is clear

Key observation is that for each of the possible n! outputs, π , there exists a unique input, for which π is the only right output

Think about this one-to-one correspondence and keep thinking until it is clear

Output:

- [1,2,3]
 [1,3,2]
 [2,1,3]
 [3,1,2]
 [2,3,1]
- **[**3, 2, 1]

Theorem: Any comparison-based algorithm requires $\Omega(n \log n)$ comparisons to sort *n* elements

The output permutation is determined solely based on the knowledge that the algorithm gains from the answers to comparisons

Answers to t comparisons make a t-bits string

▷ (the algorithm's knowledge)

After performing t comparisons the number of different types of information the algorithm can obtain is 2^t

Theorem: Any comparison-based algorithm requires $\Omega(n \log n)$ comparisons to sort *n* elements

After performing t comparisons the number of different types of information the algorithm can obtain is 2^t

<u>Claim</u>: $2^t \ge n!$, for the algorithm to work correctly for all inputs

- Otherwise, by the pigeon-hole principle, there are at least two different inputs for which the algorithm gets the same knowledge
- The (deterministic) algorithm will output the same π for both inputs
- Hence at least one of the outputs will be wrong

$$2^t \ge n! \implies 2^t \ge \left(\frac{n}{2}\right)^{n/2} \implies t \ge \log\left(\frac{n}{2}\right)^{n/2} \implies t = \Omega(n \log n)$$

- the output permutation solely depends on the series of comparison answers
- comparisons answers depend on the input
- inputs 'giving' same comparison answers lead to same output permutation
- If an algorith A always make $t < \log(n!)$ comparisons, the total number of different possible output permutations is $2^k < n!$
- In other words, there is some permutation \mathcal{A} can never output (say perm. π)
- So \mathcal{A} will fail on the input for which π is **the only correct** output