
Algorithms

Searching and Sorting

Linear and Binary Search

Order Statistics - min and max

Comparison Based Sorting Algorithms

Selection Sort

Bubble Sort

Insertion Sort

Lower Bound on Comparison based sorting

Non-Comparison Based Sorting - Integers Sorting

Counting Sort

Radix Sort

Imdad ullah Khan

Imdad ullah Khan (LUMS) Searching and Sorting 1 / 8



Lower Bound on Sorting Algorithms

Trivial lower bound: Since any element must be part of at least one
comparison, there must be at least n/2 = Ω(n) comparisons

Theorem: Any comparison-based algorithm requires Ω(n log n)
comparisons to sort n elements

This means that Ω(n log n) comparisons are necessary (lower bound)

We know that O(n log n) comparisons are sufficient (upper bound) -
Insertion-Sort with Binary-Search

Proving this theorem is non-trivial, as one has to argue about all
known and unknown sorting algorithms

Imdad ullah Khan (LUMS) Searching and Sorting 2 / 8



Lower Bound on Sorting Algorithms

Theorem: Any comparison-based algorithm requires Ω(n log n)
comparisons to sort n elements

Assumptions:

All elements (numbers) are distinct ▷ only a technicality

Comparison Based Algorithm

Only access to elements is via pairwise comparisons

No direct manipulations allowed

No decision based on values of elements or number of bits/digits

A comparison is of the form A[i ] < A[j ] (other forms are equivalent)

Imdad ullah Khan (LUMS) Searching and Sorting 3 / 8



Lower Bound on Sorting Algorithms

Theorem: Any comparison-based algorithm requires Ω(n log n)
comparisons to sort n elements

The input is some permutation of the set A = {a1, a2, . . . , an}

The output of sorting algorithm is a permutation aπ(1), aπ(2), . . . , aπ(n)

▷ think of π(i) as index of ith order statistics of A

Key observation is that for each of the possible n! outputs, π, there exists
a unique input, for which π is the only right output

Think about this one-to-one correspondence and keep thinking until it is
clear

Imdad ullah Khan (LUMS) Searching and Sorting 4 / 8



Lower Bound on Sorting Algorithms

Key observation is that for each of the possible n! outputs, π, there exists
a unique input, for which π is the only right output

Think about this one-to-one correspondence and keep thinking until it is
clear

Assume

a1 < a2 < a3

Input:

[a1, a2, a3]

[a1, a3, a2]

[a2, a1, a3]

[a2, a3, a1]

[a3, a1, a2]

[a3, a2, a1]

Output:

[1, 2, 3]

[1, 3, 2]

[2, 1, 3]

[3, 1, 2]

[2, 3, 1]

[3, 2, 1]

Imdad ullah Khan (LUMS) Searching and Sorting 5 / 8



Lower Bound on Sorting Algorithms

Theorem: Any comparison-based algorithm requires Ω(n log n)
comparisons to sort n elements

The output permutation is determined solely based on the knowledge that
the algorithm gains from the answers to comparisons

Answers to t comparisons make a t-bits string

▷ (the algorithm’s knowledge)

After performing t comparisons the number of different types of
information the algorithm can obtain is 2t

Imdad ullah Khan (LUMS) Searching and Sorting 6 / 8



Lower Bound on Sorting Algorithms

Theorem: Any comparison-based algorithm requires Ω(n log n)
comparisons to sort n elements

After performing t comparisons the number of different types of
information the algorithm can obtain is 2t

Claim: 2t ≥ n!, for the algorithm to work correctly for all inputs

Otherwise, by the pigeon-hole principle, there are at least two
different inputs for which the algorithm gets the same knowledge

The (deterministic) algorithm will output the same π for both inputs

Hence at least one of the outputs will be wrong

2t ≥ n! =⇒ 2t ≥
(n
2

)n/2
=⇒ t ≥ log

(n
2

)n/2
=⇒ t = Ω(n log n)

Imdad ullah Khan (LUMS) Searching and Sorting 7 / 8



Lower Bound on Sorting Algorithms

Assume

a1 < a2 < a3

Input:

[a1, a2, a3]

[a1, a3, a2]

[a2, a1, a3]

[a2, a3, a1]

[a3, a1, a2]

[a3, a2, a1]

Output:

[1, 2, 3]

[1, 3, 2]

[2, 1, 3]

[3, 1, 2]

[2, 3, 1]

[3, 2, 1]

the output permutation solely depends on the series of comparison answers

comparisons answers depend on the input

inputs ’giving’ same comparison answers lead to same output permutation

If an algorith A always make t < log(n!) comparisons, the total number of
different possible output permutations is 2k < n!

In other words, there is some permutation A can never output (say perm. π)

So A will fail on the input for which π is the only correct output

Imdad ullah Khan (LUMS) Searching and Sorting 8 / 8


