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Sorting

Sorting is to order of numbers in an array. The desired order can be

Ascending or increasing

Descending or decreasing

Generally, we sort in ascending order

Arrangement from smallest value to largest value

Array A is sorted if A[1] ≤ A[2] ≤ · · ·A[i ] ≤ A[i + 1] ≤ · · · ≤ A[n]
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Selection Sort

Selection sort repeatedly finds the minimum of the ‘remaining array’ and
brings to its correct position

In i th pass, minimum value in A[i , . . . , n] is moved to index i

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

A =

Swap(min(A[2− 6]), A[2])
FindMin(A[2− 6])

Swap(min(A[4− 6]), A[4])
FindMin(A[4− 6])

Swap(min(A[1− 6]), A[1])

FindMin(A[1− 6])
9 3 4 72 8

793 42 8

2 3 4 7 8 9

Swap(min(A[3− 6]), A[3])
FindMin(A[3− 6])

A[5] < A[6], No Swap
FindMin(A[5− 6])

732 84 9

32 84 7 9

1 2 3 4 5 6

8 9 3 4 2 7
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Selection Sort

Selection sort repeatedly finds the minimum of the ‘remaining array’ and
brings to its correct position

In i th pass, minimum value in A[i , . . . , n] is moved to index i

Algorithm Selection-Sort(A)

for i = 1 to n − 1 do

(min, indexofMin)← findmin(A[i , . . . , n])

swap(A[i ],A[indexofMin])

Correct by definition!

Number of comparisons in successive calls to findmin:

(n − 1) + (n − 2) + · · ·+ 3 + 2 + 1 =
n(n − 1)

2
= O(n2)
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Bubble Sort

Bubble sort repeatedly moves the largest element to the end of the
‘remaining array’

Swaps out-of-order adjacent elements (in a moving bubble)

Pass 1 Pass 2 Pass 3 Pass 4

8 3 4 2 9

8 9 3 4 2

8 9 3 4 2

8 3 9 4 2

8 3 4 9 2

3 2 4 8 9

2 8 9

3 8 9

3 4

4 2

4 2 98 3

3 2 98 4

3 4 98 2

3 4 2 8 9

3 2 8 94

32 4 8 9
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Bubble Sort

Bubble sort repeatedly moves the largest element to the end of the
‘remaining array’

Swaps out-of-order adjacent elements (in a moving bubble)

Algorithm Bubble-Sort(A)

for pass = 1 to n − 1 do

for j = 1 to n − pass do

if (A[j ] > A[j + 1]) then

Swap(A[j ],A[j + 1])

Worst case number of comparisons is

(n − 1) + (n − 2) + · · ·+ 3 + 2 + 1 = O(n2)

Early detect if the array gets sorted (if no swap in a pass)
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Insertion Sort

Insertion Sort maintains the ‘initial sorted region’ A[1, . . . , i ]

Inserts A[i + 1] into the sorted region to extend it

1 2 i− 1 i i+ 1

x

. . . n

︸ ︷︷ ︸
sorted region

︸ ︷︷ ︸
unsorted region

1 2 i− 1 i i+ 1. . . n

︸ ︷︷ ︸
sorted region

︸ ︷︷ ︸
unsorted region

insert

y

i+ 2

x
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Insertion Sort

Insertion Sort maintains the ‘initial sorted region’ A[1, . . . , i ]

Inserts A[i + 1] into the sorted region to extend it

1 2 i− 1 i i+ 1

x

. . . n

︸ ︷︷ ︸
sorted region

︸ ︷︷ ︸
unsorted region

1 2 i− 1 i i+ 1. . . n

︸ ︷︷ ︸
extended sorted region

︸ ︷︷ ︸
unsorted region

insert

y

i+ 2

x
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Insertion Sort

Insertion Sort maintains the ‘initial sorted region’ A[1, . . . , i ]

Inserts A[i + 1] into the sorted region to extend it

Algorithm Insertion-Sort(A)

for i = 1 to n − 1 do

x ← A[i + 1]

j ← i

while j > 0 and A[j ] > x do

A[j + 1]← A[j ]

j = j − 1

A[j ]← x

1 2 i− 1 i i+ 1

x

. . . n

︸ ︷︷ ︸
sorted region

︸ ︷︷ ︸
unsorted region

1 2 i− 1 i i+ 1. . . n

︸ ︷︷ ︸
sorted region

︸ ︷︷ ︸
unsorted region

insert

y

i+ 2

x
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Insertion Sort: Example

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

3 8 9

3 4 8 9

2

Pass 6

A =

3 4 7 8 92

8 9 3 4 2 7

8 9 3 4 2 7

4 2 7

2 7

73 4 8 9

9 inserted with 0 swaps

3 inserted with 2 swaps

4 inserted with 2 swaps

2 inserted with 4 swaps

7 inserted with 2 swaps

8 9 3 4 2 7
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Insertion Sort: Analysis

Best-Case: When A is already sorted

No swapping to insert elements at correct position

1 comparison at each pass, n − 1 total comparisons

No swaps

Worst-Case: When A is reverse sorted

In each pass all elements in sorted region are compared and swapped

Number of comparisons: i comparisons in pass i

1 + 2 + 3 + · · ·+ (n − 2) + (n − 1) = O(n2)

Number of swaps: i swaps in pass i

1 + 2 + 3 + · · ·+ (n − 2) + (n − 1) = O(n2)
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Insertion Sort with binary-search

1 2 i− 1 i i+ 1

x

. . . n

︸ ︷︷ ︸
sorted region

︸ ︷︷ ︸
unsorted region

insert

Use extended binary-search to find position of x in sorted region

log i comparisons in the i th pass

Total comparisons:

log 1 + log 2 + log 3 + · · ·+ log n = log n! ≈ n log n

▷ Follows from log a+ log b = log(ab) and Stirling’s approximation
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Which sorting algorithm is better?

Selection, insertion, and bubble sort all have worst case runtimes O(n2)

When A is already sorted

insertion sort benefits

Bubble sort with early stopping too

InsertionSort with binary search takes O(n log n) comparisons

If number of comparisons is our only concern (swaps don’t count), then
this is the best we can do

▷ See lower bound on comparison based sorting

Imdad ullah Khan (LUMS) Searching and Sorting 16 / 1


