
Algorithms

Searching and Sorting

Linear and Binary Search

Order Statistics - min and max

Comparison Based Sorting Algorithms

Selection Sort

Bubble Sort

Insertion Sort

Lower Bound on Comparison based sorting

Non-Comparison Based Sorting - Integers Sorting

Counting Sort

Radix Sort

Imdad ullah Khan

Imdad ullah Khan (LUMS) Searching and Sorting 1 / 1

Sorting

Sorting is to order of numbers in an array. The desired order can be

Ascending or increasing

Descending or decreasing

Generally, we sort in ascending order

Arrangement from smallest value to largest value

Array A is sorted if A[1] ≤ A[2] ≤ · · ·A[i] ≤ A[i + 1] ≤ · · · ≤ A[n]

min max2nd

min
. ith

min
2nd

max
.A =

Imdad ullah Khan (LUMS) Searching and Sorting 2 / 1

Selection Sort

Selection sort repeatedly finds the minimum of the ‘remaining array’ and
brings to its correct position

In i th pass, minimum value in A[i , . . . , n] is moved to index i

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

A =

Swap(min(A[2− 6]), A[2])
FindMin(A[2− 6])

Swap(min(A[4− 6]), A[4])
FindMin(A[4− 6])

Swap(min(A[1− 6]), A[1])

FindMin(A[1− 6])
9 3 4 72 8

793 42 8

2 3 4 7 8 9

Swap(min(A[3− 6]), A[3])
FindMin(A[3− 6])

A[5] < A[6], No Swap
FindMin(A[5− 6])

732 84 9

32 84 7 9

1 2 3 4 5 6

8 9 3 4 2 7

Imdad ullah Khan (LUMS) Searching and Sorting 3 / 1

Selection Sort

Selection sort repeatedly finds the minimum of the ‘remaining array’ and
brings to its correct position

In i th pass, minimum value in A[i , . . . , n] is moved to index i

Algorithm Selection-Sort(A)

for i = 1 to n − 1 do

(min, indexofMin)← findmin(A[i , . . . , n])

swap(A[i],A[indexofMin])

Correct by definition!

Number of comparisons in successive calls to findmin:

(n − 1) + (n − 2) + · · ·+ 3 + 2 + 1 =
n(n − 1)

2
= O(n2)

Imdad ullah Khan (LUMS) Searching and Sorting 4 / 1

Bubble Sort

Bubble sort repeatedly moves the largest element to the end of the
‘remaining array’

Swaps out-of-order adjacent elements (in a moving bubble)

Pass 1 Pass 2 Pass 3 Pass 4

8 3 4 2 9

8 9 3 4 2

8 9 3 4 2

8 3 9 4 2

8 3 4 9 2

3 2 4 8 9

2 8 9

3 8 9

3 4

4 2

4 2 98 3

3 2 98 4

3 4 98 2

3 4 2 8 9

3 2 8 94

32 4 8 9

Imdad ullah Khan (LUMS) Searching and Sorting 5 / 1

Bubble Sort

Bubble sort repeatedly moves the largest element to the end of the
‘remaining array’

Swaps out-of-order adjacent elements (in a moving bubble)

Pass 1 Pass 2 Pass 3 Pass 4

8 3 4 2 9

8 9 3 4 2

8 9 3 4 2

8 3 9 4 2

8 3 4 9 2

3 2 4 8 9

2 8 9

3 8 9

3 4

4 2

4 2 98 3

3 2 98 4

3 4 98 2

3 4 2 8 9

3 2 8 94

32 4 8 9

Imdad ullah Khan (LUMS) Searching and Sorting 6 / 1

Bubble Sort

Bubble sort repeatedly moves the largest element to the end of the
‘remaining array’

Swaps out-of-order adjacent elements (in a moving bubble)

Pass 1 Pass 2 Pass 3 Pass 4

8 3 4 2 9

8 9 3 4 2

8 9 3 4 2

8 3 9 4 2

8 3 4 9 2

3 2 4 8 9

2 8 9

3 8 9

3 4

4 2

4 2 98 3

3 2 98 4

3 4 98 2

3 4 2 8 9

3 2 8 94

32 4 8 9

Imdad ullah Khan (LUMS) Searching and Sorting 7 / 1

Bubble Sort

Bubble sort repeatedly moves the largest element to the end of the
‘remaining array’

Swaps out-of-order adjacent elements (in a moving bubble)

Pass 1 Pass 2 Pass 3 Pass 4

8 3 4 2 9

8 9 3 4 2

8 9 3 4 2

8 3 9 4 2

8 3 4 9 2

3 2 4 8 9

2 8 9

3 8 9

3 4

4 2

4 2 98 3

3 2 98 4

3 4 98 2

3 4 2 8 9

3 2 8 94

32 4 8 9

Imdad ullah Khan (LUMS) Searching and Sorting 8 / 1

Bubble Sort

Bubble sort repeatedly moves the largest element to the end of the
‘remaining array’

Swaps out-of-order adjacent elements (in a moving bubble)

Algorithm Bubble-Sort(A)

for pass = 1 to n − 1 do

for j = 1 to n − pass do

if (A[j] > A[j + 1]) then

Swap(A[j],A[j + 1])

Worst case number of comparisons is

(n − 1) + (n − 2) + · · ·+ 3 + 2 + 1 = O(n2)

Early detect if the array gets sorted (if no swap in a pass)

Imdad ullah Khan (LUMS) Searching and Sorting 9 / 1

Insertion Sort

Insertion Sort maintains the ‘initial sorted region’ A[1, . . . , i]

Inserts A[i + 1] into the sorted region to extend it

1 2 i− 1 i i+ 1

x

. . . n

︸ ︷︷ ︸
sorted region

︸ ︷︷ ︸
unsorted region

1 2 i− 1 i i+ 1. . . n

︸ ︷︷ ︸
sorted region

︸ ︷︷ ︸
unsorted region

insert

y

i+ 2

x

Imdad ullah Khan (LUMS) Searching and Sorting 10 / 1

Insertion Sort

Insertion Sort maintains the ‘initial sorted region’ A[1, . . . , i]

Inserts A[i + 1] into the sorted region to extend it

1 2 i− 1 i i+ 1

x

. . . n

︸ ︷︷ ︸
sorted region

︸ ︷︷ ︸
unsorted region

1 2 i− 1 i i+ 1. . . n

︸ ︷︷ ︸
extended sorted region

︸ ︷︷ ︸
unsorted region

insert

y

i+ 2

x

Imdad ullah Khan (LUMS) Searching and Sorting 11 / 1

Insertion Sort

Insertion Sort maintains the ‘initial sorted region’ A[1, . . . , i]

Inserts A[i + 1] into the sorted region to extend it

Algorithm Insertion-Sort(A)

for i = 1 to n − 1 do

x ← A[i + 1]

j ← i

while j > 0 and A[j] > x do

A[j + 1]← A[j]

j = j − 1

A[j]← x

1 2 i− 1 i i+ 1

x

. . . n

︸ ︷︷ ︸
sorted region

︸ ︷︷ ︸
unsorted region

1 2 i− 1 i i+ 1. . . n

︸ ︷︷ ︸
sorted region

︸ ︷︷ ︸
unsorted region

insert

y

i+ 2

x

Imdad ullah Khan (LUMS) Searching and Sorting 12 / 1

Insertion Sort: Example

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

3 8 9

3 4 8 9

2

Pass 6

A =

3 4 7 8 92

8 9 3 4 2 7

8 9 3 4 2 7

4 2 7

2 7

73 4 8 9

9 inserted with 0 swaps

3 inserted with 2 swaps

4 inserted with 2 swaps

2 inserted with 4 swaps

7 inserted with 2 swaps

8 9 3 4 2 7

Imdad ullah Khan (LUMS) Searching and Sorting 13 / 1

Insertion Sort: Analysis

Best-Case: When A is already sorted

No swapping to insert elements at correct position

1 comparison at each pass, n − 1 total comparisons

No swaps

Worst-Case: When A is reverse sorted

In each pass all elements in sorted region are compared and swapped

Number of comparisons: i comparisons in pass i

1 + 2 + 3 + · · ·+ (n − 2) + (n − 1) = O(n2)

Number of swaps: i swaps in pass i

1 + 2 + 3 + · · ·+ (n − 2) + (n − 1) = O(n2)

Imdad ullah Khan (LUMS) Searching and Sorting 14 / 1

Insertion Sort with binary-search

1 2 i− 1 i i+ 1

x

. . . n

︸ ︷︷ ︸
sorted region

︸ ︷︷ ︸
unsorted region

insert

Use extended binary-search to find position of x in sorted region

log i comparisons in the i th pass

Total comparisons:

log 1 + log 2 + log 3 + · · ·+ log n = log n! ≈ n log n

▷ Follows from log a+ log b = log(ab) and Stirling’s approximation

Imdad ullah Khan (LUMS) Searching and Sorting 15 / 1

Which sorting algorithm is better?

Selection, insertion, and bubble sort all have worst case runtimes O(n2)

When A is already sorted

insertion sort benefits

Bubble sort with early stopping too

InsertionSort with binary search takes O(n log n) comparisons

If number of comparisons is our only concern (swaps don’t count), then
this is the best we can do

▷ See lower bound on comparison based sorting

Imdad ullah Khan (LUMS) Searching and Sorting 16 / 1

