Searching and Sorting

- Linear and Binary Search
- Order Statistics MIN and MAX
- Comparison Based Sorting Algorithms
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
- Lower Bound on Comparison based sorting
- Non-Comparison Based Sorting Integers Sorting
 - Counting Sort
 - Radix Sort

Imdad ullah Khan

Order Statisitcs

Order statistics are used to summarize data by a single element **The** i^{th} **order statistic is the** i^{th} **smallest element** element at index i when the data is sorted

▷ Assuming data is numerical (has a total order)

- Minimum: 1st order statistic
- Maximum: *n*th order statistic
- Median: $\lfloor \frac{n+1}{2} \rfloor$ th order statistic

▷ (n: odd/even)

quartiles, deciles, percentiles are all order statistics

Order statistics have many applications and are closely related to sorting

Find Minimum Element

Input: An array A of n distinct numbers **Output:** The smallest number $x \in A$ and its index

Algorithm FINDMIN(A)	
$min \leftarrow A[1]$	\triangleright <i>A</i> [1] is minimum of <i>A</i> [1 · · · 1]
for $i = 2$ to n do	
if $A[i] < min$ then	
$min \leftarrow A[i]$	▷ Update <i>min</i> if A[i] is smaller

Correctness is proved using 'loop invariant'

Prove by induction on i that

After i^{th} iteration min = minimum of A[1...i]

- **Runtime** is n-1 comparisons
- This is the best we can do

Lower Bound on Finding Min Element

This is the best we can do

Any comparison based FINDMIN algorithm needs $\Omega(n)$ comparisons

- Initially every element of A is a candidate to be min
- A comparison between two elements makes a winner and a loser
- Except for min every element must have won at least one comparison otherwise it may still be the *min*
- One comparison produces at most one winner

▷ reduces the number of candidates by at most one

For n-1 candidates elimination at least n-1 comparisons are needed

Find Min and Max

Input: An array *A* of *n* distinct numbers

Output: The smallest and largest numbers x and y in A and their indices

• First run FINDMIN(A), then run FINDMAX(A)

▷ Takes 2n - 2 comparisons (O(n))

Cannot do asymptotically better, but can improve the constant

Find Min and Max: A better algorithm

Compare successive pairs in *A* and make two new arrays

Losers: smaller in each comparisonWinners: bigger in each comparison

Find Min in the Losers array

Find Max in the Winners array

Runtime: n/2 + n/2 - 1 + n/2 - 1 = 3n/2 - 2 (matches lower bound) \triangleright called the tournament style algorithm

Can easility be done without the auxiliary arrays

Find Max and Second Max

Input: An array *A* of *n* distinct numbers **Output:** The largest and the second largest numbers *x* and *y* in *A*

\triangleright $n-1$ comparisons
▷ 0 comparisons
$\triangleright n-2$ comparisons

Total runtime: (2n - 3) comparisons

Find Max and Second Max

Input: An array A of n distinct numbers **Output:** The largest and the second largest numbers x and y in A

- A Tournament Style Algorithm
 - Make Losers and Winners array ▷ n/2 comp
 - $\triangleright x$ will be in Winners array
 - \triangleright y would win against every element except x
 - \triangleright y could be in the Losers or Winners array
 - Find max and second max of the Winners array $\triangleright (2n/2 3)$ comp
 - Find max of Losers array $\triangleright (n/2 1)$ comp
 - y is the larger of second max of Winners and max of Losers

Total number of comparisons is still $\frac{n}{2} + \frac{2n}{2} - 3 + \frac{n}{2} - 1 \simeq 2n - 3$

- Follow the comparison trail of the max
- Leads to an algorithm taking $n + \log n$ comparisons
- This is also the lower bound

Order Statistics: Summary

- Order statistics are important summaries of data, related to sorting
- Minimum (and analogously maximum) can be found in linear time
- Tournament style algorithm finds maximum and minimum in 3n/2
- Find maximum and second maximum can be found in O(n + log n) using the comparison trail