Algorithms

Searching and Sorting

- Linear and Binary Search
- Order Statistics - min and max

■ Comparison Based Sorting Algorithms

- Selection Sort
- Bubble Sort
- Insertion Sort

■ Lower Bound on Comparison based sorting

- Non-Comparison Based Sorting - Integers Sorting
- Counting Sort
- Radix Sort

Imdad ullah Khan

Order Statisitcs

Order statistics are used to summarize data by a single element The $i^{\text {th }}$ order statistic is the $i^{t h}$ smallest element element at index i when the data is sorted

$$
\triangleright \text { Assuming data is numerical (has a total order) }
$$

- Minimum: 1st order statistic
- Maximum: nth order statistic
- Median: $\left\lfloor\frac{n+1}{2}\right\rfloor$ th order statistic
$\triangleright(n$: odd/even $)$
- quartiles, deciles, percentiles are all order statistics

Order statistics have many applications and are closely related to sorting

Find Minimum Element

Input: An array A of n distinct numbers
Output: The smallest number $x \in A$ and its index
Algorithm FindMin(A)
$\min \leftarrow A[1] \quad \triangleright A[1]$ is minimum of $A[1 \cdots 1]$
for $\mathrm{i}=2$ to n do
if $A[i]<\min$ then
$\min \leftarrow A[i]$
\triangleright Update \min if $A[i]$ is smaller

■ Correctness is proved using 'loop invariant'
Prove by induction on i that After $i^{\text {th }}$ iteration $\min =\mathbf{m i n i m u m}$ of $A[1 \ldots i]$

- Runtime is $n-1$ comparisons
- This is the best we can do

Lower Bound on Finding Min Element

This is the best we can do
Any comparison based FindMin algorithm needs $\Omega(n)$ comparisons

- Initially every element of A is a candidate to be min
- A comparison between two elements makes a winner and a loser
- Except for min every element must have won at least one comparison otherwise it may still be the min
- One comparison produces at most one winner
\triangleright reduces the number of candidates by at most one
■ For $n-1$ candidates elimination at least $n-1$ comparisons are needed

Find Min and Max

Input: An array A of n distinct numbers
Output: The smallest and largest numbers x and y in A and their indices

- First run $\operatorname{FindMin}(A)$, then run $\operatorname{FindMax}(A)$

$$
\triangleright \text { Takes } 2 n-2 \text { comparisons }(O(n))
$$

■ Cannot do asymptotically better, but can improve the constant

Find Min and Max: A better algorithm

Compare successive pairs in A and make two new arrays

■ Losers: smaller in each comparison
■ Winners: bigger in each comparison Find Min in the Losers array

Find Max in the Winners array

Runtime: $n / 2+n / 2-1+n / 2-1=3 n / 2-2$ (matches lower bound)
\triangleright called the tournament style algorithm
Can easility be done without the auxiliary arrays

Find Max and Second Max

Input: An array A of n distinct numbers
Output: The largest and the second largest numbers x and y in A

Algorithm FindMax2ndMax(A)

$x \leftarrow \operatorname{FindMax}(A)$	$\triangleright n-1$ comparisons
$A \leftarrow A \backslash\{x\}$	$\triangleright 0$ comparisons
$y \leftarrow \operatorname{FindMax}(A)$	$\triangleright n-2$ comparisons

Total runtime: $(2 n-3)$ comparisons

Find Max and Second Max

Input: An array A of n distinct numbers
Output: The largest and the second largest numbers x and y in A
A Tournament Style Algorithm

- Make Losers and Winners array $\triangleright n / 2$ comp
$\triangleright x$ will be in Winners array
$\triangleright y$ would win against every element except x
$\triangleright y$ could be in the Losers or Winners array
- Find max and second max of the Winners array $\quad \triangleright(2 n / 2-3)$ comp
- Find max of Losers array
$\triangleright(n / 2-1)$ comp
- y is the larger of second max of Winners and max of Losers

Total number of comparisons is still $\frac{n}{2}+\frac{2 n}{2}-3+\frac{n}{2}-1 \simeq 2 n-3$

Find Max and Second Max: A better algorithm

2	3	8	9	6	7	5	4

Find Max and Second Max: A better algorithm

Find Max and Second Max: A better algorithm

Find Max and Second Max: A better algorithm

Find Max and Second Max: A better algorithm

- Follow the comparison trail of the max

■ Leads to an algorithm taking $n+\log n$ comparisons

- This is also the lower bound

Order Statistics: Summary

■ Order statistics are important summaries of data, related to sorting

- Minimum (and analogously maximum) can be found in linear time
- Tournament style algorithm finds maximum and minimum in 3n/2
- Find maximum and second maximum can be found in $O(n+\log n)$ using the comparison trail

