
Algorithms

Searching and Sorting

Linear and Binary Search

Order Statistics - min and max

Comparison Based Sorting Algorithms

Selection Sort

Bubble Sort

Insertion Sort

Lower Bound on Comparison based sorting

Non-Comparison Based Sorting - Integers Sorting

Counting Sort

Radix Sort

Imdad ullah Khan

Imdad ullah Khan (LUMS) Searching and Sorting 1 / 9

The Search Problem

Input: Array A of numbers, |A| = n and a number x
Output: Index of x in A if x ∈ A or −1 if x /∈ A

A contains keys of the (potentially) large records

A fundamental problem in almost all applications

Hard to think of an application where searching is not a building block

Imdad ullah Khan (LUMS) Searching and Sorting 2 / 9

Linear Search

Input: Array A of numbers, |A| = n and a number x
Output: Index of x in A if x ∈ A or −1 if x /∈ A

Linear search is the most natural solution

From left to right,

check if the current number is x

{
If yes, retrieve the element

else continue until the end of A

Algorithm Linear Search for x in array A

found ← 0
for i = 1 to n do
if A[i] = x then
found ← 1
break

if found = 1 then
return i ▷ to retrieve A[i].data

else
return −1

Imdad ullah Khan (LUMS) Searching and Sorting 3 / 9

Linear Search

Input: Array A of numbers, |A| = n and a number x
Output: Index of x in A if x ∈ A or −1 if x /∈ A

Correctness follows from the above reasoning

Best Case: A[1] = x

Worst Case: x /∈ A ▷ it will compare with the whole array

Runtime: Linear search will take O(n) time in worst case

Can we do better?

By the input scan argument we cannot

Any algorithm must at least look at every element in A, ∵ if an
element is missed from comparison, that may be x

Imdad ullah Khan (LUMS) Searching and Sorting 4 / 9

Binary Search

Input: Sorted array A of n numbers and a number x

Output: Index of x in A if x ∈ A or −1 if x /∈ A

Compare A[mid] with x

If not equal, eliminate the half where x cannot lie

Search x in the remaining half

8A =

bin-search(A[1, n], x)

if(A[mid] > x)if(A[mid] < x)

bin-search(A[1,mid], x) bin-search(A[mid+ 1, n], x)

12 17 18 23 39

12 17 18 23 39

−2 2 3 4 6

−2 2 3 4 6

A[mid]=x

Imdad ullah Khan (LUMS) Searching and Sorting 5 / 9

Binary Search: Pseudo code

Input: Sorted array A of n numbers and a number x

Output: Index of x in A if x ∈ A or −1 if x /∈ A

Algorithm Binary Search for x in sorted array A[st, . . . , end]

1: function bin-search(A,st,end ,x)
2: if end < st then ▷ check if A is empty
3: return −1
4: else

5: mid ← (end + st)

2
6: if A[mid] = x then
7: return mid ▷ If found return index
8: else if A[mid] > x then
9: return bin-search(A, st,mid − 1, x)

10: else
11: return bin-search(A,mid + 1, end , x)

Imdad ullah Khan (LUMS) Searching and Sorting 6 / 9

Binary Search

T (n): time of bin-search on |A| = n

Each call on n ≥ 1 makes

some comparisons

plus a recursive call

T (n) =

{
1 if n < 1

T (n/2) + 3 if n ≥ 1

Recurrence Relation

T (n) = T (n/2) + 3

= (T (n/4) + 3) + 3

= (T (n/8) + 3) + 3 + 3

...

= T (n/2k) + 3 + 3 . . .+ 3︸ ︷︷ ︸
k times

= 1 + 3 log n

= O(log n)

Binary search takes O(log n) time in the worst case

Imdad ullah Khan (LUMS) Searching and Sorting 7 / 9

Extended Binary Search

Input: Sorted array A of n numbers and a number x

Output:

{
Index of x in A if x ∈ A

index of smallest element in A larger than x if x /∈ A

▷ if x /∈ A, it returns an index where x would be (inserted)

Just need to adjust the first if condition in the algorithm, where it
returns −1

Runtime of this algorithm is the same as usual bin-search

Imdad ullah Khan (LUMS) Searching and Sorting 8 / 9

Searching: Summary

Searching is a fundamental problem

Linear Search for arbitrarily ordered arrays takes O(n) time

Runtime of Linear Search matches the lower bound

Binary Search takes O(log n) time for Sorted Array

Binary Search can readily be extended to return the appropriate
location to insert an element x in the array

Imdad ullah Khan (LUMS) Searching and Sorting 9 / 9

