
Algorithms

Asymptotic Analysis

Runtime Analysis and Big Oh - O(·)

Complexity Classes and Curse of Exponential Time

Ω(·), Θ(·), o(·), ω(·) - Relational properties

Imdad ullah Khan

Imdad ullah Khan (LUMS) Asymptotic Analysis 1 / 8



Asymptotic-Complexity Classes

Class Name Class Symbol Example

Constant O(1) Comparison of two integers

Logarithmic O(log(n)) Binary Search, Exponentiation

Linear O(n) Linear Search

Log-Linear On(log(n)) Merge Sort

Quadratic O(n2) Integer multiplications

Cubic O(n3) Matrix multiplication

Polynomial O(na), a ∈ R

Exponential O(an), a ∈ R Print all subsets

Factorial O(n!) Print all permutations

n! ≫ 2n ≫ n3 ≫ n2 ≫ nlogn ≫ n ≫ logn ≫ 1

Imdad ullah Khan (LUMS) Asymptotic Analysis 2 / 8



Growth Rates of Functions

10n n3

n2

2nlog2n

n

2log2n

Imdad ullah Khan (LUMS) Asymptotic Analysis 3 / 8



Find Fn: The curse of Exponential time

Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

Fn =


0 if n = 0

1 if n = 1

Fn−1 + Fn−2 if n > 2

Imdad ullah Khan (LUMS) Asymptotic Analysis 4 / 8



Find Fn: The curse of Exponential time

Implementation of the recursive definition of Fn

function fib1(n)
if n = 0 then
return 0

else if n = 1 then
return 1

else
return fib1(n − 1) + fib1(n − 2)

Is it correct?

How much time it takes to compute Fn?

Can we do better?

Imdad ullah Khan (LUMS) Asymptotic Analysis 5 / 8



Find Fn: The curse of Exponential time

Let T (n) be the number of ops (comparisons and additions) on input n

function fib1(n)
if n = 0 then

return 0
else if n = 1 then

return 1
else

return fib1(n− 1) + fib1(n− 2)

T (n) =


1 if n = 0

2 if n = 1

T (n − 1) + T (n − 2) + 3 if n > 2

By definition, we have T (n) > Fn

The running time of fib1(n) grows as fast as Fn

T (n) ≥ 2.69n ▷ exponential in n (prove by induction)

Imdad ullah Khan (LUMS) Asymptotic Analysis 6 / 8



Find Fn: The curse of Exponential time

T (n) ≥ 2.69n

For n = 300, computing F300 takes (much) more than 2150 ops

On a 64THz computer (64× 240 operations per second)

It needs 2104s > 1027h > 1023 years

Another perspective to see growth of exponential time

Runtime of fib1(n) is ≥ 20.694n ≈ (1.6)n

it takes 1.6 times longer to compute Fn+1 than Fn

Moore’s law =⇒ computers get roughly 1.6 times faster each year

If we can compute F100 with this year’s technology, next year we will
manage F101, the year after, F102, ...

▷ one more Fibonacci number every year

Such is the curse of exponential time

How can we improve it?
Imdad ullah Khan (LUMS) Asymptotic Analysis 7 / 8



Exponential vs Polynomial Growth rates

Sizes of problems that can be solved within 1012 operations on today’s
computer and next years computer with double speed

Complexity Increase Problem Size (today) Problem Size (next year)

n n → 2n 1012 2× 1012

n2 n →
√
2n 106 1.4× 106

n3 n → 3
√
2n 104 1.25× 104

2n/10 n → n + 10 400 410

2n n → n + 1 40 41

Imdad ullah Khan (LUMS) Asymptotic Analysis 8 / 8


