Algorithms

Proving NP-COMPLETE Problems

m The Cook-Levin Theorem: SAT is NP-COMPLETE
m NP-COMPLETE Problems from known Reductions
® DIR-HAM-CYCLE is NP-COMPLETE

B DIR-HAM-PATH is NP-COMPLETE

m HAM-CYCLE is NP-COMPLETE

m TSP is NP-COMPLETE

m SUBSET-SUM is NP-COMPLETE

m PARTITION is NP-COMPLETE
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Polynomial Time Reduction: Algorithm Design Paradigm

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

Subroutine for B takes an instance y of B and returns the solution B(y)

P Yy B(y) Az)

—»| Preprocess Subroutine for B Postprocess |————»

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Suppose A <, B.

If B is polynomial time solvable, then A can be solved in polynomial time
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Reduction as a tool for hardness

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

Subroutine for B takes an instance y of B and returns the solution B(y)

& v B(y) Alx)
—— > Preprocess Subroutine for B Postprocess >

Algorithm for A transforms an instance & of A to an instance y of B. Then transforms B(y) to A(z)

H X NP
BYYENPY<,X

A problem X is NP-COMPLETE, if

Suppose A <, B.

If Ais NP-COMPLETE, then B is NP-COMPLETE

> Why? By transitivity of reduction
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Proving NP-COMPLETE Problems

A problem X is NP-COMPLETE, if
X € NP
VYEeNPY <, X

To prove X NP-COMPLETE, reduce an NP-COMPLETE problem Z to X

If Z is NP-COMPLETE, and X e NP then X is NP-COMPLETE
Z<,X

X € NP is explicitly proved

VY NP, Y <, X follows by transitivity
VY eNP, Y<,Z istrueas Zis NP-COMPLETE
[Y<p,Z N Z<X] = V<X
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Proving NP-COMPLETE Problems

A problem X is NP-COMPLETE, if
X € NP
VYeNPY <, X

How to prove a problem NP-COMPLETE?

To prove X to be NP-COMPLETE

Prove X € NP

Reduce some known NP-COMPLETE problem Z to X

Again! Reduce a known NP-COMPLETE problem to X

> Not the other way round. A very common mistake!
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A first NP-COMPLETE Problem

Theorem (The Cook-Levin theorem)
SAT(f) is NP-COMPLETE

m Proved by Stephen Cook (1971) and earlier by Leonid Levin (but became
known later)

m Levin proved six NP-COMPLETE problems (in addition to other results)

m We prove this by reducing CIRCUIT-SAT(C) problem to SAT(f) problem
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A first NP-CoMPLETE Problem

To prove X NP-COMPLETE, reduce an NP-COMPLETE problem Z to X
Where to begin? we need a first NP-COMPLETE Problem

Theorem (The Cook-Levin theorem)

SAT(f) is NP-COMPLETE

m Proved by Stephen Cook (1971) and earlier by Leonid Levin (but became
known later)

m Levin proved six NP-COMPLETE problems (in addition to other results)

We prove the theorem by reducing CIRCUIT-SAT(C) problem to SAT(f) problem
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The Cook-Levin theorem

Theorem (The Cook-Levin theorem)

SAT(f) is NP-COMPLETE

We already showed that SAT is polynomial time verifiable

SAT € NP

Now we prove that

CIRCUIT-SAT(C) <, SAT(f)

This proves that SAT is NP-HARD and completes the proof
m Suppose A is an algorithm to decide SAT(f)
m Given an instance C of the CIRCUIT-SAT(C) problem
m In polynomial time we transform C into an equivalent CNF formula f
m Make a call A(f) to decide whether or not CIRCUIT-SAT(C) = Yes
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The Cook-Levin theorem

CIRCUIT-SAT(C) <, SAT(f) )

Make a variable for each input wire and output X1 )
of each gate of the circuit C' <
2
X3

For each not gate make equi-satisfiable clauses

m These clauses are satisfied iff x; = x; (xi Vx)) A (X5 V X5)

For each and gate make equi-satisfiable clauses
m These clauses are satisfied iff xx = x; A x5 ></D.
(%3 VX)) A (x5 VX)) A (X V XV Xk)
For each or gate make equi-satisfiable clauses
m These clauses are satisfied iff x; = x; V x5 >(\D.
(xV xk) (X5 V xK) A (x5 V x5V Xg)
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The Cook-Levin theorem

CIRCUIT-SAT(C) <, SAT(f) )

m Easy to verify that the gates and corresponding formula are equisatisfiable

m The output gate value is encoded with a clause containing the
corresponding variable

m The final formula f is a grand conjunction of all the clauses made for each
gate and output of the circuit C

f is equisatisfiable with the C

> i.e. CIRCUIT-SAT(C) = Yes if and only if A(f) = Yes

The reduction takes polynomial time, requires one traversal of the DAG,
constant time per gate
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Implied NP-COMPLETE Problems

From known reductions, the following problems are NP-COMPLETE

B SAT <, 3-SAT

m 3-SAT <, IND-SET

m IND-SET <, CLIQUE

m IND-SET <, VERTEX-COVER

B VERTEX-COVER Sp SET-COVER

‘/ SET-COVER |

VERTEX-COVER

.
‘SET—PACKINGJ | cLIQUE |
L S

m IND-SET Sp SET-PACKING

We show a few more reductions to prove problems to be NP-COMPLETE
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DIR-HAM-CYCLE is NP-COMPLETE

We showed DIR-HAM-CYCLE to be in NP for NP-HARDNESS we prove

3-sAT(f) <, DIR-HAM-CYCLE(G) )

Let f be an instance of 3-SAT on n variables and m clauses
Let x1,...,x, be the variables and Ci, ..., C,, be the clauses of f

Construct a digraph G that has a Hamiltonian cycle iff f is satisfiable

In G there will be 2" sub-Hamiltonian cycles corresponding to the 2"
possible assignments to variables x, . .., x,

We introduce a structure for each clause such that these sub-Hamiltonian
cycles can be combined if and only if all clauses are satisfiable
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DIR-HAM-CYCLE is NP-COMPLETE

3-sAT(f) <, DIR-HAM-CYCLE(G) J

For each x; make a sequence of 3(m + 1) bidirectionally adjacent vertices

m x; =1 = traverse this gadget from L; to R; and vice-versa
B (x;,x+1) = (1,0) = traverse from L; = R; — Riz1 — Lit1

] (Xi,Xi+1) = (0, 0) — traverse from R; — L; — R;+1 — L,'_;,_l

. - oo
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DIR-HAM-CYCLE is NP-COMPLETE

3-sAT(f) <, DIR-HAM-CYCLE(G) )

Make nodes s and t and combine all the gadgets as follows

————]
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DIR-HAM-CYCLE is NP-COMPLETE

3-sAT(f) <, DIR-HAM-CYCLE(G) J

2" Ham cycles traversing each gadget in either direction

m These correspond to the 27 possible assignments to the n variables

Make a Hamiltonian cycle exist iff there is a satisfying assignment

m Have to incorporate clauses. Make nodes for each clause

If a variable satisfy a clause, traverse it by a detour from that gadget

C1 = (L,73, ) Co = (I3, 2, 1)
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DIR-HAM-CYCLE is NP-COMPLETE

3-sAT(f) <, DIR-HAM-CYCLE(G)

Given f, make G as described above

G has a directed Hamiltonian cycle iff f is satisfiable

The construction takes polynomial time (about O(nm))
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DIR-HAM-PATH is NP-COMPLETE

DIR-HAM-CYCLE(G) <, DIR-HAM-PATH(G') J

Let G = (V, E) be an instance of the DIR-HAM-CYCLE(G) problem

m For any arbitrary v € V, make G’ on V(G)\ {v} U {vin, Vour }
> i.e. remove v and add two new vertices v;, and vou;

® v, has all incoming edges of v directed to it from in-neighbors of v

m v, has all outgoing edges of v directed from it to out-neighbors of v

<=5 <

G has a directed Hamiltonian cycle iff G’ has a directed Hamiltonian path J
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HAM-CYCLE is NP-COMPLETE

We proved its polynomial time verifiability earlier, now we show that

DIR-HAM-CYCLE(G) <, HAM-CYCLE(G') |

Let G = (V, E) be an instance of the DIR-HAM-CYCLE(G). |V|=n, |E|=m

m Make an undirected graph G’ = (V',E), |V/|=3nand |[E'| = m+ 2n

Split every vertex v € V into three vertices Vi,, Vmd, Vor and add to V’

Add edges (Vin, Vmd) and (Vimd, Vor) in E’
m For each directed edge (x, y) € E, make the edge (Xot, yin) in E’

G has a dir-Ham cycle iff G’ has an (undirected) Hamiltonian cycle )
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TSP is NP-COMPLETE

HAM-CYCLE(G) <, TSP(G', k) J

m TSP(G’, k) requires weighted graph and a number k
m Given an instance G = (V/, E) of HAM-CYCLE(G), |V|=n

m Make a complete graph on n vertices G’ with weights as follows

1 if (vi,v) € E(G)

w(vi, vj) =
2 else
Hamiltonian cycle TSP tour in G’ of No Hamiltonian No TSP tour of
in G shown in blue of length shown in blue cycle in G length 5 in G'
G has a Hamiltonian cycle iff G’ has a TSP tour of length k = n )
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SUBSET-SUM is NP-COMPLETE

SUBSET-SUM is NP-COMPLETE

m Given a set U= {ay,a,...,a,} of integers
m A weight function w : U — Z™, and a positive integer C

m The SUBSET-sUM(U, w, C) problem: Is there a S C U wiht Y w; = C?
a, €S

m If w;'s and C are given in unary encoding

m then O(nC) dynamic programming solution is a polynomial time
m But this is exponential in size of input if C is provided in binary (or decimal)

We prove that

3-SAT(f) <, SUBSET-SUM{(e,s,e) J
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SUBSET-SUM is NP-COMPLETE

3-SAT(f) <, SUBSET-SUM(e,s,e) J

m Given an instance f of 3-SAT(f) with n variables and m clauses
m Construct 2n + 2m weights: 2 objects for each variable and each clause
m Each is a n+ m-digits integer (a digit for each variable and each clause)
m The weight for literal x; and X; have digit 1 corresponding to the variable x;
m The digit for clause C; is 1 if the literal appears in clause C;
1 T3 w3 Tpn—1 xn, C1 Co C3 Cm—1 Cp,

|1 101

T |1 1

T2 1 1)1 1|1

7 1 1

T3 1 1

z3 1 1111

Cy=(z1 Va2 VT3), Co2 = (21 V22 VT3), C3 = (T1 VT2 V T3)
Cm—1 = (z2 Vs Vo), Cp = (z2 V3 Vas)

IMDAD ULLAH KHAN (LUMS) Proving NP-COMPLETE Problems 21/25



SUBSET-SUM is NP-COMPLETE

3-SAT(f) <, SUBSET-SUM(e,e,s) J

m Remaining 2m weights set so as last sum of digits at each position from

n+lton+misbh > details in notes

x1 x3 X3 Tn-1 zo, C1 C2 C3 UL”L
Tyl (1 Ll
@[ ]
T2 1 (1 ZZ
24 1 1 [ 1]
T ] [ 1]
T3 1 1{1]1 7:
o [TTTTT] - L)1
=TI LI [1]
] (1]

1
1 L1
1 L1
LTIl L] ]
LTI T T[]
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SUBSET-SUM is NP-COMPLETE

3-SAT(f) <, SUBSET-SUM(e,e,s)

[ R

The SUBSET-SUM instance with 2n + 2m weights as shown above and
n m

’_/\ﬁ/_A“ - - . . .
C=111...,11333...33 is Yes if and only the f is satisfiable
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PARTITION is NP-COMPLETE

SUBSET-SUM(U, w, C) <, PARTITION(U', k) J
m Let Ul: {W13W27"-aWn y Whett Wn+2}
lw,,+1:2[2w,-]—C and Wn+2=[ZW,']—|-C
i=1 i=1

SUBSET-SUM(U, w, C) = Yes iff PARTITION(U’,0) = Yes (balanced) J

B> x= ). W;+2[ZW,‘] —C—|—[ZW;] +C=45> w
xeu’ acU i—1 i—1 aicel
Wpt1 Wni2

m Let P; and P, be a balanced bipartition of U’
m Both w,y; and w, 5 cannot be in the same part, assume w,, 1 € P;

m Both P; and P, cannot contain only one element, so > wy = C
XGPI\{WrH-l}
P Py
wn+1=22iwi—0 C wn+2=ziw,-+0 Ziwi—C
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NP-COMPLETE Problems

21 problems were shown to be NP-COMPLETE in a seminal paper: Richard Karp
(1972), "Reducibility Among Combinatorial Problems”
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