Algorithms

Proving NP-Complete Problems

■ The Cook-Levin Theorem: sat is NP-Complete
■ NP-Complete Problems from known Reductions
■ DIR-HAM-CYCLE is NP-COMPLETE
■ DIR-HAM-PATH is NP-COMPLETE

- ham-CyCLE is NP-Complete
- TSP is NP-Complete

■ SUbSET-SUM is NP-Complete

- Partition is NP-Complete

Imdad ullah Khan

Polynomial Time Reduction: Algorithm Design Paradigm

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

Subroutine for B takes an instance y of B and returns the solution $B(y)$

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms $B(y)$ to $A(x)$

Suppose $A \leq{ }_{p} B$.
If B is polynomial time solvable, then A can be solved in polynomial time

Reduction as a tool for hardness

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

Subroutine for B takes an instance y of B and returns the solution $B(y)$

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms $B(y)$ to $A(x)$

A problem X is NP-Complete, if
$1 X \in \mathrm{NP}$
2 $\forall Y \in \operatorname{NP} Y \leq_{p} X$

Suppose $A \leq{ }_{p} B$.
If A is NP-Complete, then B is NP-Complete
\triangleright Why?

Proving NP-Complete Problems

A problem X is NP-Complete, if
$1 X \in \mathrm{NP}$
2 $\forall Y \in \operatorname{NP} Y \leq_{p} X$

To prove X NP-Complete, reduce an NP-Complete problem Z to X

If Z is NP-Complete, and
$1 X \in \mathrm{NP}$
$2 Z \leq_{p} X$

Proving NP-Complete Problems

A problem X is NP-Complete, if
$1 X \in \mathrm{NP}$
2 $\forall Y \in \operatorname{NP} Y \leq_{p} X$

How to prove a problem NP-COMPLETE?

To prove X to be NP-Complete
1 Prove $X \in \mathrm{NP}$
2 Reduce some known NP-Complete problem Z to X

Again! Reduce a known NP-Complete problem to X
\triangleright Not the other way round. A very common mistake!

A first NP-Complete Problem

Theorem (The Cook-Levin theorem)

$\operatorname{SAT}(f)$ is NP-Complete

- Proved by Stephen Cook (1971) and earlier by Leonid Levin (but became known later)
- Levin proved six NP-Complete problems (in addition to other results)
- We prove this by reducing Circuit-Sat (C) problem to $\operatorname{SAT}(f)$ problem

A first NP-Complete Problem

To prove X NP-Complete, reduce an NP-Complete problem Z to X

Where to begin? we need a first NP-Complete Problem

Theorem (The Cook-Levin theorem)
$\operatorname{sAt}(f)$ is NP-Complete

- Proved by Stephen Cook (1971) and earlier by Leonid Levin (but became known later)
- Levin proved six NP-Complete problems (in addition to other results)

We prove the theorem by reducing CIRCUIT-SAT(C) problem to SAT (f) problem

The Cook-Levin theorem

Theorem (The Cook-Levin theorem)
 $\operatorname{SAT}(f)$ is NP-Complete

We already showed that SAT is polynomial time verifiable

$$
\mathrm{SAT} \in \mathrm{NP}
$$

Now we prove that

$$
\operatorname{CIRCUIT-SAT}(C) \leq_{p} \operatorname{SAT}(f)
$$

This proves that SAT is NP-HARD and completes the proof

- Suppose \mathcal{A} is an algorithm to decide $\operatorname{sat}(f)$
- Given an instance C of the Circuit-sat (C) problem
- In polynomial time we transform C into an equivalent CNF formula f
- Make a call $\mathcal{A}(f)$ to decide whether or not Circuit-Sat $(C)=$ Yes

The Cook-Levin theorem

$$
\operatorname{CIRCUIT}-\operatorname{SAT}(C) \leq_{p} \operatorname{SAT}(f)
$$

Make a variable for each input wire and output of each gate of the circuit C

For each not gate make equi-satisfiable clauses

- These clauses are satisfied iff $\mathrm{x}_{\mathrm{j}}=\overline{\mathrm{x}_{\mathrm{i}}}$

For each and gate make equi-satisfiable clauses

- These clauses are satisfied iff $\mathrm{x}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}} \wedge \mathrm{x}_{\mathrm{j}}$

The Cook-Levin theorem

$\operatorname{CIRCUIT}-\operatorname{SAT}(C) \leq_{p} \operatorname{SAT}(f)$

- Easy to verify that the gates and corresponding formula are equisatisfiable
- The output gate value is encoded with a clause containing the corresponding variable
- The final formula f is a grand conjunction of all the clauses made for each gate and output of the circuit C
f is equisatisfiable with the C

$$
\triangleright \text { i.e. } \operatorname{Circuit-Sat}(C)=\text { Yes if and only if } \quad \mathcal{A}(f)=\text { Yes }
$$

The reduction takes polynomial time, requires one traversal of the DAG, constant time per gate

Implied NP-Complete Problems

From known reductions, the following problems are NP-Complete

- SAT $\leq_{p} 3$-SAT
- 3 -SAT \leq_{p} IND-SET
- IND-SET \leq_{p} CLIQUE
- IND-SET \leq_{p} VERTEX-COVER
- VERTEX-COVER \leq_{p} SET-COVER
- IND-SET \leq_{p} SET-PACKING

We show a few more reductions to prove problems to be NP-COMPLETE

DIR-HAM-CYCLE is NP-COMPLETE

We showed DIR-HAM-CYCLE to be in NP for NP-HARDNESS we prove

$$
3-\operatorname{SAT}(f) \leq_{p} \quad \text { DIR-HAM-CYCLE }(G)
$$

Let f be an instance of 3 -SAT on n variables and m clauses
Let x_{1}, \ldots, x_{n} be the variables and C_{1}, \ldots, C_{m} be the clauses of f
Construct a digraph G that has a Hamiltonian cycle iff f is satisfiable
1 In G there will be 2^{n} sub-Hamiltonian cycles corresponding to the 2^{n} possible assignments to variables x_{1}, \ldots, x_{n}

2 We introduce a structure for each clause such that these sub-Hamiltonian cycles can be combined if and only if all clauses are satisfiable

dir-HAm-CyCle is NP-Complete

3 -SAT $(f) \leq_{p}$ DIR-HAM-CYCLE (G)

For each x_{i} make a sequence of $3(m+1)$ bidirectionally adjacent vertices

- $x_{i}=1 \Longrightarrow$ traverse this gadget from L_{i} to R_{i} and vice-versa

■ $\left(x_{i}, x_{i+1}\right)=(1,0) \Longrightarrow$ traverse from $L_{i} \rightarrow R_{i} \rightarrow R_{i+1} \rightarrow L_{i+1}$
$\square\left(x_{i}, x_{i+1}\right)=(0,0) \Longrightarrow$ traverse from $R_{i} \rightarrow L_{i} \rightarrow R_{i+1} \rightarrow L_{i+1}$

DIR-HAM-CYCLE is NP-COMPLETE

$$
3-\operatorname{SAT}(f) \leq_{p} \text { DIR-HAM-CYCLE }(G)
$$

Make nodes s and t and combine all the gadgets as follows

DIR-HAM-CYCLE is NP-COMPLETE

$$
3-\operatorname{SAT}(f) \leq_{p} \quad \text { DIR-HAM-CYCLE }(G)
$$

- 2^{n} Ham cycles traversing each gadget in either direction
- These correspond to the 2^{n} possible assignments to the n variables
- Make a Hamiltonian cycle exist iff there is a satisfying assignment

■ Have to incorporate clauses. Make nodes for each clause
■ If a variable satisfy a clause, traverse it by a detour from that gadget

$$
C_{m}=\left(l, \overline{x_{i}}, l_{.}\right)
$$

DIR-HAM-CYCLE is NP-COMPLETE

$$
3-\mathrm{SAT}(f) \leq_{p} \quad \text { DIR-HAM-CYCLE }(G)
$$

Given f, make G as described above

G has a directed Hamiltonian cycle iff f is satisfiable

The construction takes polynomial time (about $O(n m)$)

DIR-HAM-PATH is NP-COMPLETE

$$
\operatorname{DIR}-\operatorname{HAM}-\operatorname{CYCLE}(G) \leq_{p} \quad \text { DIR-HAM-PATH }\left(G^{\prime}\right)
$$

Let $G=(V, E)$ be an instance of the DIR-HAM-CyCLE (G) problem

- For any arbitrary $v \in V$, make G^{\prime} on $V(G) \backslash\{v\} \cup\left\{v_{\text {in }}, v_{\text {out }}\right\}$
\triangleright i.e. remove v and add two new vertices $v_{\text {in }}$ and $v_{\text {out }}$
- $v_{i n}$ has all incoming edges of v directed to it from in-neighbors of v
- $v_{\text {out }}$ has all outgoing edges of v directed from it to out-neighbors of v

G has a directed Hamiltonian cycle iff G^{\prime} has a directed Hamiltonian path

ham-Cycle is NP-Complete

We proved its polynomial time verifiability earlier, now we show that

$$
\operatorname{DIR}-\operatorname{HAM}-\operatorname{CYCLE}(G) \leq_{p} \quad \operatorname{HAM}-\operatorname{CYCLE}\left(G^{\prime}\right)
$$

Let $G=(V, E)$ be an instance of the Dir-Ham-Cycle $(G) . \quad|V|=n,|E|=m$

- Make an undirected graph $G^{\prime}=\left(V^{\prime}, E\right),\left|V^{\prime}\right|=3 n$ and $\left|E^{\prime}\right|=m+2 n$
- Split every vertex $v \in V$ into three vertices $v_{i n}, v_{m d}, v_{o t}$ and add to V^{\prime}
- Add edges $\left(v_{i n}, v_{m d}\right)$ and $\left(v_{m d}, v_{o t}\right)$ in E^{\prime}
- For each directed edge $(x, y) \in E$, make the edge $\left(x_{o t}, y_{i n}\right)$ in E^{\prime}

G has a dir-Ham cycle iff G^{\prime} has an (undirected) Hamiltonian cycle

TSP is NP-Complete

$$
\operatorname{HAM}-\operatorname{CYCLE}(G) \leq_{p} \operatorname{TSP}\left(G^{\prime}, k\right)
$$

- $\operatorname{TSP}\left(G^{\prime}, k\right)$ requires weighted graph and a number k
- Given an instance $G=(V, E)$ of Ham-Cycle $(G),|V|=n$
- Make a complete graph on n vertices G^{\prime} with weights as follows

$$
w\left(v_{i}, v_{j}\right)= \begin{cases}1 & \text { if }\left(v_{i}, v_{j}\right) \in E(G) \\ 2 & \text { else }\end{cases}
$$

Hamiltonian cycle in G shown in blue

TSP tour in G^{\prime} of of length shown in blue

No Hamiltonian cycle in G

No TSP tour of length 5 in G^{\prime}
G has a Hamiltonian cycle iff G^{\prime} has a TSP tour of length $k=n$

SUBSET-SUM is NP-COMPLETE

Subset-sum is NP-Complete

- Given a set $U=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of integers
- A weight function $w: U \rightarrow \mathbb{Z}^{+}$, and a positive integer C
- The $\operatorname{SUBSET-SUm}(U, w, C)$ problem: Is there a $S \subset U$ wiht $\sum_{a_{i} \in S} w_{i}=C$?
- If w_{i} 's and C are given in unary encoding
- then $O(n C)$ dynamic programming solution is a polynomial time
- But this is exponential in size of input if C is provided in binary (or decimal)

We prove that

$$
3-\operatorname{SAT}(f) \leq_{p} \operatorname{SUBSET}-\operatorname{SUM}(\bullet, \bullet, \bullet)
$$

SUBSET-SUM is NP-COMPLETE

$3-\operatorname{SAT}(f) \leq_{p} \quad \operatorname{SUBSET}-\operatorname{SUM}(\bullet, \bullet, \bullet)$

- Given an instance f of 3 -SAT (f) with n variables and m clauses
- Construct $2 n+2 m$ weights: 2 objects for each variable and each clause
- Each is a $n+m$-digits integer (a digit for each variable and each clause)
- The weight for literal x_{i} and $\overline{x_{i}}$ have digit 1 corresponding to the variable x_{i}
- The digit for clause C_{j} is 1 if the literal appears in clause C_{j}

$$
\begin{aligned}
& C_{1}=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right), C_{2}=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right), C_{3}=\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \\
& C_{m-1}=\left(x_{2} \vee x_{8} \vee x_{9}\right), C_{m}=\left(x_{2} \vee x_{3} \vee x_{5}\right)
\end{aligned}
$$

SUBSET-SUM is NP-COMPLETE

$$
3-\operatorname{SAT}(f) \leq_{p} \operatorname{SUBSET}-\operatorname{SUM}(\bullet, \bullet, \bullet)
$$

- Remaining $2 m$ weights set so as last sum of digits at each position from $n+1$ to $n+m$ is 5
\triangleright details in notes

SUBSET-SUM is NP-COMPLETE

$$
3-\operatorname{SAT}(f) \leq_{p} \operatorname{SUBSET}-\operatorname{SUM}(\bullet, \bullet, \bullet)
$$

The Subset-Sum instance with $2 n+2 m$ weights as shown above and $C=\overbrace{111 \ldots, 11}^{n} \overbrace{333 \ldots 33}^{m}$ is Yes if and only the f is satisfiable

PARTITION is NP-COMPLETE

$\operatorname{SUBSET}-\operatorname{Sum}(U, w, C) \leq_{p}$ Partition $\left(U^{\prime}, k\right)$

- Let $U^{\prime}=\left\{w_{1}, w_{2}, \ldots, w_{n}, w_{n+1}, w_{n+2}\right\}$
- $w_{n+1}=2\left[\sum_{i=1}^{n} w_{i}\right]-C \quad$ and $\quad w_{n+2}=\left[\sum_{i=1}^{n} w_{i}\right]+C$

$$
\operatorname{Subset-\operatorname {sum}}(U, w, C)=\text { Yes } \quad \text { iff } \quad \operatorname{Partition}\left(U^{\prime}, \mathbf{0}\right)=\text { Yes }(\text { balanced })
$$

- $\sum_{x \in U^{\prime}} x=\sum_{a_{i} \in U} w_{i}+\underbrace{2\left[\sum_{i=1}^{n} w_{i}\right]-C}_{w_{n+1}}+\underbrace{\left[\sum_{i=1}^{n} w_{i}\right]+C}_{w_{n+2}}=4 \sum_{a_{i} \in U} w_{i}$
- Let P_{1} and P_{2} be a balanced bipartition of U^{\prime}
- Both w_{n+1} and w_{n+2} cannot be in the same part, assume $w_{n+1} \in P_{1}$
- Both P_{1} and P_{2} cannot contain only one element, so $\sum_{x \in P_{1} \backslash\left\{w_{n+1}\right\}} w_{x}=C$

\[

\]

nP-COMPLETE Problems

21 problems were shown to be NP-COMPLETE in a seminal paper: Richard Karp (1972), "Reducibility Among Combinatorial Problems"

FICURE 1 - Complete Problees

