## Algorithms

## Classes of Problems

- Polynomial Time Verification
- The Classes P and NP
- The Classes ExP and coNP

■ NP-Hard and NP-Complete Problems

- Proving NP-Hardness
- A first NP-Complete Problem

Imdad ullah Khan

## NP-Hard and NP-Complete Problems

A problem $X$ is NP-HARD, if every problem in NP is polynomial time reducible to $X$

$$
X \in \mathrm{NP} \quad \text { AND } \quad \forall Y \in \mathrm{NP}, \quad Y \leq_{p} X
$$

A problem $X \in$ NP is NP-Complete, if every problem in NP is polynomial time reducible to $X$

$$
X \in \mathrm{NP} \quad \text { AND } \quad \forall Y \in \mathrm{NP}, \quad Y \leq_{p} X
$$

These problems are at least as hard as any problem in NP
Let NPC be the (sub)class of NP-COMPLETE problems
$\triangleright$ It is the set of hardest problems in NP
If any NP-complete problem can be solved in poly time, then all problems in NP can be, and thus $\mathrm{P}=\mathrm{NP}$

## How to prove NP-Completeness

A problem $X$ is NP-Complete, if
$\| X \in \mathrm{NP}$
2 $\forall Y \in \operatorname{NP} Y \leq_{p} X$

How to prove a problem NP-Complete ?

■ Proving NP is relatively easy (in many cases)

- Can we do so many reductions?


## Polynomial Time Reduction: Algorithm Design Paradigm

## Problem $A$ is polynomial time reducible to Problem $B$,

If any instance of problem $A$ can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem $B$

Subroutine for $B$ takes an instance $y$ of $B$ and returns the solution $B(y)$


Algorithm for $A$ transforms an instance $x$ of $A$ to an instance $y$ of $B$. Then transforms $B(y)$ to $A(x)$

Suppose $A \leq{ }_{p} B$.
If $B$ is polynomial time solvable, then $A$ can be solved in polynomial time

## Polynomial Time Reduction: Tool to Prove Hardness

## Problem $A$ is polynomial time reducible to Problem $B$,

If any instance of problem $A$ can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem $B$

Subroutine for $B$ takes an instance $y$ of $B$ and returns the solution $B(y)$


Algorithm for $A$ transforms an instance $x$ of $A$ to an instance $y$ of $B$. Then transforms $B(y)$ to $A(x)$

Suppose $A \leq{ }_{p} B$.
If $A$ is NP-Complete, then $B$ is NP-Complete

## Proving NP-Complete Problems

A problem $X$ is NP-Complete, if
$1 X \in \mathrm{NP}$
2 $\forall Y \in \operatorname{NP} Y \leq_{p} X$

To prove $X$ NP-Complete, reduce an NP-Complete problem $Z$ to $X$

If $Z$ is NP-Complete, and
$1 X \in \mathrm{NP}$
$2 Z \leq_{p} X$

## Proving NP-Complete Problems

A problem $X$ is NP-Complete, if
$1 X \in \mathrm{NP}$
2 $\forall Y \in \operatorname{NP} Y \leq_{p} X$

How to prove a problem NP-COMPLETE?
■ Proving NP is relatively easy

- Can we do so many reductions?

Template of proving problems to be NP-Complete

We proved that
Suppose we have the theorem
Then we can conclude that
$\operatorname{Clique}(G, k)$ is NP-Complete $\operatorname{CLIQUE}(G, k) \leq_{p} \operatorname{IND-SET}(G, k)$
ind-Set $(G, k)$ is NP-Complete

