Algorithms

Classes of Problems

- Polynomial Time Verification
- The Classes P and NP
- The Classes EXP and CONP
- NP-HARD and NP-COMPLETE Problems
- Proving NP-HARDNESS
- A first NP-Complete Problem

IMDAD ULLAH KHAN

NP-HARD and NP-COMPLETE Problems

A problem X is NP-HARD, if every problem in NP is polynomial time reducible to X

$$X \in NP$$
 AND $\forall Y \in NP$, $Y \leq_{p} X$

A problem $X \in \mathrm{NP}$ is $\begin{array}{c} \mathrm{NP\text{-}Complete}, \text{ if every problem in } \mathrm{NP} \end{array}$ is polynomial time reducible to X

$$X \in NP$$
 AND $\forall Y \in NP$, $Y \leq_p X$

These problems are at least as hard as any problem in NP

Let NPC be the (sub)class of NP-COMPLETE problems

 \triangleright It is the set of hardest problems in NP

If any $NP\mbox{-complete}$ problem can be solved in poly time, then all problems in NP can be, and thus P=NP

How to prove NP-Completeness

A problem *X* is NP-COMPLETE, if

- $X \in NP$
- $Y \in NP Y \leq_p X$

How to prove a problem NP-COMPLETE ?

- Proving NP is relatively easy (in many cases)
- Can we do so many reductions?

Polynomial Time Reduction: Algorithm Design Paradigm

Problem A is polynomial time reducible to Problem B, $A \leq_p B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

Subroutine for B takes an instance y of B and returns the solution B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Suppose $A \leq_p B$.

If B is polynomial time solvable, then A can be solved in polynomial time

Polynomial Time Reduction: Tool to Prove Hardness

Problem A is polynomial time reducible to Problem B, $A \leq_{p} B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

Subroutine for B takes an instance y of B and returns the solution B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Suppose $A \leq_p B$.

If A is NP-COMPLETE, then B is NP-COMPLETE

Proving NP-COMPLETE Problems

A problem *X* is NP-COMPLETE, if

- $X \in NP$
- $Y \in NP Y \leq_{p} X$

To prove X NP-Complete, reduce an NP-Complete problem Z to X

If Z is $\operatorname{NP-Complete}$, and

- $X \in NP$
- then \boldsymbol{X} is NP-Complete
- $Z \leq_p X$
- **1** $X \in NP$ is explicitly proved
- $Y \in NP$, $Y \leq_{p} X$ follows by transitivity

$$\forall Y \in \text{NP}, Y \leq_{p} Z$$
 is true as Z is NP-Complete

$$[Y \leq_p Z \land Z \leq_p X] \implies Y \leq_p X$$

Proving NP-Complete Problems

A problem *X* is NP-COMPLETE, if

- 1 $X \in NP$
- $Y \in NP Y \leq_{p} X$

How to prove a problem NP-Complete?

- Proving NP is relatively easy
- Can we do so many reductions?

Template of proving problems to be $\operatorname{NP-Complete}$

We proved that CLIQUE(G, k) is NP-COMPLETE

Suppose we have the theorem $CLIQUE(G, k) \leq_{p} IND-SET(G, k)$

Then we can conclude that IND-SET(G, k) is NP-COMPLETE