Algorithms

Classes of Problems

- Polynomial Time Verification
- The Classes P and NP
- The Classes EXP and CONP
- NP-HARD and NP-COMPLETE Problems
- Proving NP-HARDNESS
- A first NP-Complete Problem

IMDAD ULLAH KHAN

NP-HARD and NP-COMPLETE

A problem X is NP-HARD, if every problem in NP is polynomial time reducible to X

$$\forall Y \in NP, Y \leq_p X$$

A problem $X \in \text{NP}$ is NP-COMPLETE, if every problem in NP is polynomial time reducible to X

$$X \in NP$$
 and $\forall Y \in NP$, $Y \leq_p X$

NP-HARD and NP-COMPLETE

A problem $X \in \mathrm{NP}$ is $\operatorname{NP-COMPLETE}$, if every problem in NP is polynomial time reducible to X

$$X \in NP$$
 AND $\forall Y \in NP$, $Y \leq_p X$

These problems are at least as hard as any problem in NP

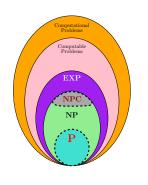
Let NPC be the (sub)class of NP-COMPLETE problems

 \triangleright It is the set of hardest problems in NP

If any $NP\mbox{-complete}$ problem can be solved in poly time, then all problems in NP can be, and thus P=NP

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP Y \leq_{p} X$



$P \subseteq NP$ $NPC \subseteq NP$

- Take any $X \in NP$ and prove that it cannot be solved in poly time
 - You proved $P \neq NP$ Why?
 - By definition of ⊂
- Take any $X \in NPC$ and solve it in poly time
 - You proved P = NP Why?
 - By definition of \leq_p

A problem X is NP-Complete, if

- 1 $X \in NP$
- $Y \in NP Y \leq_{p} X$

No polynomial time algorithm for any $\operatorname{NP-Complete}$ problem yet

 \triangleright People did and do try, as many practical problems are in NPC

No impossibility proof of poly-time solution for a $\operatorname{NP-Complete}$ problem

imes People did and do try, will prove the widely held belief that P
eq NP

Let X be any NP-COMPLETE problem.

X is polynomial time solvable if and only if P = NP

A problem X is NP-Complete, if

- 1 $X \in NP$
- $Y \in NP Y \leq_{p} X$

Why should you prove a problem to be NP-COMPLETE?

- Good evidence that it is hard
- $lue{}$ Unless your interest is proving P=NP stop trying finding efficient algorithm
 - ▶ Instead focus on special cases, heuristic, approximation algorithm

What to tell your boss if you fail to find a fast algorithm for a problem?

- I am too dumb!
- 2 There is no fast algorithm! You claim that $P \neq NP$
- 3 I cannot solve it, but neither can anyone in the world!
- ▶ You are fired
- Need a proof
- ▶ Need reduction

Dealing with Hard Problems

· What to do when we find a problem that looks hard...

I couldn't find a polynomial-time algorithm; I guess I'm too dumb. source: slideplayer.com

via Google images

Dealing with Hard Problems

· Sometimes we can prove a strong lower bound... (but not usually)

I couldn't find a polynomial-time algorithm, because no such algorithm exists!

Dealing with Hard Problems

· NP-completeness let's us show collectively that a problem is hard.

I couldn't find a polynomial-time algorithm, but neither could all these other smart people.

A problem *X* is NP-COMPLETE, if

- $X \in NP$
- $Y \in NP Y \leq_{p} X$

NP-COMPLETE problems capture the essential difficulty of all NP problems Could there be any NP-COMPLETE problem at all?

- Not very hard to imagine (an almost formal proof later)
- Let A be a polynomial time algorithm working on bit-strings that outputs **Yes/No** based on some unknown but consistent logic
- H is the problem: "Is there any polynomial sized bit-string on which A outputs **Yes**?" Clearly $H \in NP$?
- Any problem $Y \in NP$ is reducible to H
- $Y \in NP$ means there is a poly-sized certificate that can be verified. An instance \mathcal{I} of Y can be transformed to an instance of H with same answer

How to prove NP-Completeness

A problem *X* is NP-COMPLETE, if

- 1 $X \in NP$
- $Y \in NP Y \leq_p X$

How to prove a problem NP-COMPLETE ?

- Proving NP is relatively easy (in many cases)
- Can we do so many reductions?