
Algorithms

Classes of Problems

Polynomial Time Verification

The Classes P and NP

The Classes exp and coNP

NP-Hard and NP-Complete Problems

Proving NP-Hardness

A first NP-Complete Problem

Imdad ullah Khan

Imdad ullah Khan (LUMS) Classes of Problems 1 / 10



Polynomial Time Verification

Computing solution to a problem vs checking a proposed solution

Sometimes computing and verifying a solution are both “easy”

e.g. we can compute a MST of a graph and verify whether a claimed
solution is indeed a MST in polynomial time

Sometimes computing is not easy (yet) but verifying is easy

e.g. 3-sat(f ) we don’t know how to find a satisfying solution (or decide
if one exists)
But verifying a claimed solution can be done in one scan of f

Sometimes both computing and verifying a “claim” are not easy

e.g. not even clear how to “make” the claim that “G has no
Hamiltonian cycle”?

Imdad ullah Khan (LUMS) Classes of Problems 2 / 10



Polynomial Time Verification

Need to formalize “checking a solution easily” independent of computation

A decision problem X is efficiently verifiable if

1 The claim: “I is a Yes instance of X” can be made in polynomial bits

There exists a polynomial sized certificate for Yes instances of X

2 A certificate can be verified in polynomial time

There exists a polynomial time algorithm V that takes the instance I
and the certificate C such that V(I, C) = Yes iff X (I) = Yes

It takes some time to comprehend this, examples should make it clear

Imdad ullah Khan (LUMS) Classes of Problems 3 / 10



Polynomial Time Verification

The mst(G , k) problem: Is there a spanning tree of G of weight ≤ k?

mst(G , k) is polynomial time verifiable

A certificate could be the “claimed spanning tree” T for G

T can be written by writing vertices ids in some order ▷ O(n log n) bits
Adjacency matrix of edges in T ▷ O(n2) bits

A verifier can check

if vertices of T are in G
If all edges in T are actually from G
If sum of weights of edges is k

Alternatively, a certificate could be an empty string ▷ 0 bits

A verifier can run Kruskals’s algorithm to find a MST T of G

If w(T ) ≤ k , it verifies the claim otherwise rejects the claim

Imdad ullah Khan (LUMS) Classes of Problems 4 / 10



Polynomial Time Verification

3-sat(f ) is polynomial time verifiable

A certificate would be the assignment of 0 and 1’s to all variables

A verifier can evaluate f with the assignment and if the value of f is 1 it
outputs Yes (=verified) otherwise No (=not verified)

Note that we do not have to design a verifier or a technique for certifying, we
only need to prove their existence

Verifier does not have to be unique

There can be many ways to certify

▷ e.g. an independent set can be certified as the set of vertices, set of
edges, complements thereof

Verifier does not have to read the certificate, recall the requirement
V(I, C) = Yes iff X (I) = Yes

Imdad ullah Khan (LUMS) Classes of Problems 5 / 10



Polynomial Time Verification

clique(G , k) is polynomial time verifiable

Given an instance [G , k] of clique(G , k)

What could be a certificate of claim “[G , k] is Yes instance of clique(·, ·)”?

▷ What evidence prove that G has a clique of size k?

Is the certificate of polynomial length?

How can we verify that indeed [G , k] is a Yes instance of clique(G , k)

▷ Does the verifier need to read the certificate?

Is the verifier a polynomial time algorithm?

Imdad ullah Khan (LUMS) Classes of Problems 6 / 10



Polynomial Time Verification

prime(n) and composite(n) are polynomial time verifiable

▷ Note that they are complement of each other

A certificate for the composite(n) problem can be a factor d

A verifier can just confirm that 1 < d < n and d |n

Theorem (AKS(2004))

There exists a polynomial time algorithm to check whether an integer is prime

A certificate for prime(n) can be an empty string

A verifier exists by the above theorem, using that if n is prime we verify the
claim if n is not a prime we reject the claim

Imdad ullah Khan (LUMS) Classes of Problems 7 / 10



Polynomial Time Verification

vertex-cover(G , k) is polynomial time verifiable

What could be a certificate of claim “G has a vertex cover of size k”?

How can we verify that indeed “G has a vertex cover of size k?

hamiltonian(G ) is polynomial time verifiable

What could be a certificate of claim “G has a Hamiltonian cycle?”

How can we verify that indeed G has a Hamiltonian cycle?

Imdad ullah Khan (LUMS) Classes of Problems 8 / 10



Polynomial Time Verification

Are all problems “efficiently” verifiable?

3-sat(f )
It decides whether the given formula f is not satisfiable

▷ sometime referred to as unsat(f )

Suppose one wants to claim that the formula f is not satisfiable

▷ Meaning this f is a Yes instance of 3-sat(f )

How can one make a polynomial sized certificate to make the claim?

▷ “ [0, 1, 1, 0, . . . 1] does not satisfy f ”, does not mean f is not satisfiable

Imdad ullah Khan (LUMS) Classes of Problems 9 / 10



Polynomial Time Verification

Are all problems “efficiently” verifiable?

Are the following problems polynomial time verifiable?

hamiltonian(G ):

▷ It requires Yes output, if G does not have a Hamiltonian cycle

no-indepenedent-set(G , k):

▷ It requires Yes output, if G does not have an independent set of
size k

mostly-long-paths(G , s, t, k):

▷ Are majority of paths from s to t in G have length at least k

Imdad ullah Khan (LUMS) Classes of Problems 10 / 10


