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Versions of Problems: Self Reducibility

Are versions of a problem polynomial time reducible to each other?

Many search and optimization problems are only polynomially more
difficult than corresponding decision problem

▷ Any efficient algorithm for the decision problem can be used to solve the
search problem efficiently

This is called self-reducibility

All the problems we discuss exhibit self-reducibility, where appropriate
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By transitivity of reductions, all versions are equivalent ▷ w.r.t polytime
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Versions of Problems: Self Reducibility

Are versions of a problem polynomial time reducible to each other?

dec-ind-set(G , k) ≤p max-ind-set(G )

Proof: Suppose A is an algorithm for max-ind-set(G )

Given an instance [G , k] of dec-ind-set(G , k)

1 Call A on G

2 if the returned independent set is of size ≥ k , then return Yes

3 else return No

4 Need to check size of the returned set ▷ polynomial time
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Versions of Problems: Self Reducibility

dec-ind-set(G , k) ≤p srch-ind-set(G , k)

Proof: Suppose A is an algorithm for srch-ind-set(G , k)

Given an instance [G , k] of dec-ind-set(G , k)

1 Call A on [G , k]

2 if it returns an independent set, then return Yes

3 else if it returns NF, then return No
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Versions of Problems: Self Reducibility

srch-ind-set(G , k) ≤p max-ind-set(G )

Proof: Suppose A is an algorithm for max-ind-set(G )

Given an instance [G , k] of srch-ind-set(G , k)

1 Call A on G

2 if returned independent set is of size ≥ k , then return the set (or any
k vertices out of it)

3 else return NF

4 Need to check size of the returned set and select k of it ▷ poly-time

Imdad ullah Khan (LUMS) Polynomial Time Reduction 5 / 1



Versions of Problems: Self Reducibility

srch-ind-set(G , k) ≤p dec-ind-set(G , k)

Let A be an algorithm for dec-ind-set(G , k).

We use A to determine if a vertex is needed for an ind. set of size k

Algorithm Algorithm for srch-ind-set(G , k) problem

I ← ∅ ▷ Initialize an empty independent set
t ← k
for v ∈ V (G ) do

ans ← A(G \ {v}, t)
if ans = yes then ▷ v is not needed

V (G )← V (G ) \ {v}
else

V (G )← V (G ) \ {v}
I ← I ∪ {v}
t ← t − 1
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Versions of Problems: Self Reducibility

max-ind-set(G ) ≤p dec-ind-set(G , k)

Suppose A is an algorithm for dec-ind-set(G , k)

First find the size of maximum independent set (optimal value)

1 For t ≥ 1, call A on [G , t]

2 If it outputs Yes increment t until the output is No

3 Let k be the last t for which there is a Yes answer

This k is the size of max independent set

Find a k-ind.set using previous algo (srch-ind-set(G , k) ≤p dec-ind-set(G , k))

▷ Note that it uses monotonicity of independent sets

We should use binary search for the last Yes answer, Why?

▷ It may be essential to keep reduction polynomial time
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Self Reducibility: Hamiltonian Path

srch-ham-path(G ) ≤p dec-ham-path(G )

Suppose A is an algorithm for dec-ham-path(G )

1 Call A on G , if it returns No then return NF

2 For each vertex v , call A on G \ {v}
▷ select or de-select v? All vertices have to be in Ham path

1 For each edge e = (u, v), call A on G \ {e}
2 If it returns Yes, then e is not needed for Ham path, remove e from G

3 If it returns No, then e is needed

4 In the end, only edges of a Ham path will remain
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Self Reducibility: Vertex Cover

srch-vertex-cover(G , k) ≤p dec-vertex-cover(G , k)

Suppose A is an algorithm for dec-vertex-cover(G , k)

1 Call A on G and k, if it returns No, then return NF

2 For each vertex v , call A on G \ {v} and k

3 If G has cover of size k , then G \ {v} has a VC of size k

▷ whether or not v is in the cover, we will get Yes answer

4 Call A on G \ {v} and k − 1, if it returns Yes, then v ∈ k-sized cover

5 If it returns No, then v is not part of any k-sized cover
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Self Reducibility: Vertex Cover

srch-vertex-cover(G , k) ≤p dec-vertex-cover(G , k)

Suppose A is an algorithm for dec-vertex-cover(G , k)

1 Call A on G and k, if it returns No, then return NF

2 For each vertex v , call A on G \ {v} and k

3 If G has cover of size k , then G \ {v} has a VC of size k ▷ whether or not v
is in the cover, we will get Yes answer

4 Call A on G \ {v} and k − 1, if it returns Yes, then v ∈ k-sized cover

5 If it returns No, then v is not part of any k-sized cover

Algorithm for srch-ind-set(G , k) using A for dec-ind-set(G , k)

1: C ← ∅ t ← k
2: for v ∈ V (G ) = {v1, . . . , vn} and while t ≥ 1 do
3: ans ← A(G \ {v}, t − 1)
4: if ans = Yes then
5: C ← C ∪ {v} t ← t − 1

6: V (G )← V (G ) \ {v}
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Caution for Self Reducibility

CAUTION! self-reducibility does not mean that “any algorithm solving the
decision version must use a solution of the search version”

The search version of factor(n, k) problem is in a sense the ‘complement of
the prime(n) (and composite(n)) problem

factor(n, k): Find a factor of n ∈ [2, k] else output NF ⇐⇒ (n is prime)

The famous AKS (2004) theorem on primality testing uses involved number
theory to solve the prime(n) and composite(n) problem, but does not solve the
search problem factor(n, k) (no polynomial time algorithm is yet known for it)

In other words, there are search versions of the problem that are not known to be
reducible to their decision versions

We focus on decision problems (or decision version of problems)
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