## Algorithms

## Polynomial Time Reduction

■ Polynomial Time Reduction Definition

- Reduction by Equivalence

■ Reduction from Special Cases to General Case

- Reduction by Encoding with Gadgets
- Transitivity of Reductions

■ Decision, Search and Optimization Problem

- Self-Reducibility

Imdad ullah Khan

## Polynomial Time Reduction

## Problem $A$ is polynomial time reducible to Problem $B$,

If any instance of problem $A$ can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem $B$

If any algorithm for problem $B$ can be used [called (once or more) with 'clever' legal inputs] to solve any instance of problem $A$

Subroutine for $B$ takes an instance $y$ of $B$ and returns the solution $B(y)$


Algorithm for $A$ transforms an instance $x$ of $A$ to an instance $y$ of $B$. Then transforms $B(y)$ to $A(x)$

## Reduction by encoding with gadgets

$$
3 \text {-SAT }(f) \leq_{p} \text { INDEPENDENT-SET }(G, k)
$$

$$
f=\left(x_{11} \vee x_{12} \vee x_{13}\right) \wedge\left(x_{21} \vee x_{22} \vee x_{23}\right) \wedge \ldots \quad \ldots \wedge\left(x_{m 1} \vee x_{m 2} \vee x_{m 3}\right)
$$

We need to set each of $x_{1}, \ldots, x_{n}$ to $0 / 1$ so as $f=1$

Alternatively,
1 We need to pick a literal from each clause and set it to 1
2 But we cannot make conflicting settings

## Reduction by encoding with gadgets

$$
3-\operatorname{SAT}(f) \leq_{p} \text { INDEPENDENT-SET }(G, k)
$$

Given $f$ on $n$ variables and $m$ clauses - Make a graph $G$ as follows

- For each clause make a triangle with nodes labeled with literals
- For clauses with 2 and 1 literal make an edge or a node
- Make edges between literals appearing in different clauses as complements
$\left(x_{11} \vee x_{12} \vee x_{13}\right) \wedge \ldots \wedge\left(x_{i 1} \vee x_{i 2} \vee x_{i 3}\right) \wedge \ldots \wedge\left(x_{j 1} \vee x_{j 2} \vee x_{j 3}\right) \wedge \ldots \wedge\left(x_{m 1} \vee x_{m 2} \vee x_{m 3}\right)$


## Reduction by encoding with gadgets

$$
3 \text {-SAT }(f) \leq_{p} \text { INDEPENDENT-SET }(G, k)
$$

Given $f$ on $n$ variables and $m$ clauses - Make a graph $G$ as follows

- For each clause make a triangle with nodes labeled with literals
- For clauses with 2 and 1 literal make an edge or a node
- Make edges between literals appearing in different clauses as complements

$$
\left(x_{11} \vee x_{12} \vee x_{13}\right) \wedge \ldots \wedge\left(x_{i 1} \vee x_{i 2} \vee x_{i 3}\right) \wedge \ldots \wedge\left(x_{j 1} \vee x_{j 2} \vee x_{j 3}\right) \wedge \ldots \wedge\left(x_{m 1} \vee x_{m 2} \vee x_{m 3}\right)
$$



## Reduction by encoding with gadgets

$$
3 \text {-SAT }(f) \leq_{p} \text { INDEPENDENT-SET }(G, k)
$$

Given $f$ on $n$ variables and $m$ clauses - Make a graph $G$ as follows

- For each clause make a triangle with nodes labeled with literals
- For clauses with 2 and 1 literal make an edge or a node
- Make edges between literals appearing in different clauses as complements

$$
\left(x_{11} \vee x_{12} \vee x_{13}\right) \wedge \ldots \wedge\left(x_{i 1} \vee x_{i 2} \vee x_{i 3}\right) \wedge \ldots \wedge\left(x_{j 1} \vee x_{j 2} \vee x_{j 3}\right) \wedge \ldots \wedge\left(x_{m 1} \vee x_{m 2} \vee x_{m 3}\right)
$$



## Reduction by encoding with gadgets

$$
3-\operatorname{SAT}(f) \leq_{p} \text { INDEPENDENT-SET }(G, k)
$$

- Given $f$ on $n$ variables and $m$ clauses - Make a graph $G$
- For each clause make a triangle with nodes labeled with literals
- For clauses with 2 and 1 literal make an edge or a node

■ Make edges between literals appearing in different clauses as complements
Theorem: $f$ is satisfiable iff $G$ has an independent set of size $m$

$$
\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
$$

## Reduction by encoding with gadgets

$$
3-\operatorname{SAT}(f) \leq_{p} \text { INDEPENDENT-SET }(G, k)
$$

- Given $f$ on $n$ variables and $m$ clauses - Make a graph $G$

■ For each clause make a triangle with nodes labeled with literals

- For clauses with 2 and 1 literal make an edge or a node

■ Make edges between literals appearing in different clauses as complements
Theorem: $f$ is satisfiable iff $G$ has an independent set of size $m$

$$
\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \quad\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \quad \wedge \quad\left(\overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
$$



## Reduction by encoding with gadgets

$$
3-\operatorname{SAT}(f) \leq_{p} \text { INDEPENDENT-SET }(G, k)
$$

- Given $f$ on $n$ variables and $m$ clauses - Make a graph $G$
- For each clause make a triangle with nodes labeled with literals
- For clauses with 2 and 1 literal make an edge or a node

■ Make edges between literals appearing in different clauses as complements
Theorem: $f$ is satisfiable iff $G$ has an independent set of size $m$

$$
\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \quad\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \quad \wedge \quad\left(\overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
$$



$$
x_{1}=1, \overline{x_{3}}=1, \overline{x_{4}}=1
$$

## Reduction by encoding with gadgets

$$
3-\operatorname{SAT}(f) \leq_{p} \text { INDEPENDENT-SET }(G, k)
$$

- Given $f$ on $n$ variables and $m$ clauses - Make a graph $G$
- For each clause make a triangle with nodes labeled with literals
- For clauses with 2 and 1 literal make an edge or a node

■ Make edges between literals appearing in different clauses as complements
Theorem: $f$ is satisfiable iff $G$ has an independent set of size $m$

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)
$$

## Reduction by encoding with gadgets

$$
3-\operatorname{SAT}(f) \leq_{p} \text { INDEPENDENT-SET }(G, k)
$$

- Given $f$ on $n$ variables and $m$ clauses - Make a graph $G$
- For each clause make a triangle with nodes labeled with literals
- For clauses with 2 and 1 literal make an edge or a node

■ Make edges between literals appearing in different clauses as complements
Theorem: $f$ is satisfiable iff $G$ has an independent set of size $m$

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)
$$



## Reduction by encoding with gadgets

$$
3-\operatorname{SAT}(f) \leq_{p} \text { INDEPENDENT-SET }(G, k)
$$

- Given $f$ on $n$ variables and $m$ clauses - Make a graph $G$
- For each clause make a triangle with nodes labeled with literals
- For clauses with 2 and 1 literal make an edge or a node

■ Make edges between literals appearing in different clauses as complements
Theorem: $f$ is satisfiable iff $G$ has an independent set of size $m$

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)
$$



## Reduction by encoding with gadgets

$$
3-\operatorname{SAT}(f) \leq_{p} \text { INDEPENDENT-SET }(G, k)
$$

- Given $f$ on $n$ variables and $m$ clauses - Make a graph $G$

■ For each clause make a triangle with nodes labeled with literals

- For clauses with 2 and 1 literal make an edge or a node

■ Make edges between literals appearing in different clauses as complements
Theorem: $f$ is satisfiable iff $G$ has an independent set of size $m$

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)
$$



No satisfying assignmnet, No independent set of size 5

## Reduction by encoding with gadgets

$$
3-\operatorname{SAT}(f) \leq_{p} \text { INDEPENDENT-SET }(G, k)
$$

Theorem: $f$ is satisfiable iff $G$ has an independent set of size $m$
Let $\mathcal{A}$ be an algorithm for the independent-Set $(G, k)$ problem
We will use $\mathcal{A}$ to solve the 3 -SAT $(f)$ problem
Given any instance $f$ of 3 -SAT $(f)$ on $n$ variables and $m$ clauses

- Construct the graph as outlined above
- Call $\mathcal{A}$ on [G, m]
- if $\mathcal{A}$ returns Yes, declare $f$ satisfiable and vice-versa
$\triangleright G$ can be constructed in time polynomial in $n$ and $m$

