Algorithms

Polynomial Time Reduction

■ Polynomial Time Reduction Definition

- Reduction by Equivalence
- Reduction from Special Cases to General Case
- Reduction by Encoding with Gadgets
- Transitivity of Reductions

■ Decision, Search and Optimization Problem

- Self-Reducibility

Imdad ullah Khan

Polynomial Time Reduction

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

If any algorithm for problem B can be used [called (once or more) with 'clever' legal inputs] to solve any instance of problem A

Subroutine for B takes an instance y of B and returns the solution $B(y)$

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms $B(y)$ to $A(x)$

Reduction from special case to general case

$\operatorname{VErtex}-\operatorname{Cover}(G, k) \leq_{p} \operatorname{SEt-\operatorname {Cover}}\left(U, \mathcal{S}, k^{\prime}\right)$

Let \mathcal{A} be an algorithm solving set-Cover $\left(U, \mathcal{S}, k^{\prime}\right)$
Let $[G, k]$ be an instance of the VERTEX-COVER problem
1 Make $U=E, \quad k^{\prime}=k$
$2 \mathcal{S}=\left\{S_{1}, \ldots, S_{n}\right\}$, where $S_{i}=\left\{e \in E \mid e\right.$ is incident on $\left.v_{i}\right\}$

$$
\begin{aligned}
& U=\left\{e_{1}, e_{2}, e_{2}, e_{4}, e_{5}, e_{6}, e_{7}\right\} \\
& S_{1}=\left\{e_{1}, e_{2}, e_{8}\right\} \\
& S_{3}=\left\{e_{2}, e_{3}\right\} \\
& S_{2}=\left\{e_{1}, e_{4}\right\} \\
& S_{4}=\left\{e_{3}, e_{4}, e_{5}, e_{6}, e_{8}\right\} \\
& S_{5}=\left\{e_{5}, e_{7}\right\} \\
& S_{6}=\left\{e_{6}, e_{7}\right\}
\end{aligned}
$$

Theorem: $[U, \mathcal{S}]$ has a set cover of size k iff G has a vertex cover of size k
3 If $\mathcal{A}\left(U, \mathcal{S}, k^{\prime}\right)=$ Yes, then output Yes, else output No

Reduction from special Case to General Case

We get the following reduction very similarly

$$
\operatorname{INDEPENDENT-SET}(G, k) \leq_{p} \operatorname{SET}-\operatorname{PACKING}\left(U, \mathcal{S}, k^{\prime}\right)
$$

The following reductions are even more straight forward. They follow from respective definitions of the problems

$$
3-\operatorname{SAT}(f) \leq_{p} \operatorname{SAT}\left(f^{\prime}\right)
$$

$$
\operatorname{SUBSET}-\operatorname{Sum}(U, w, C) \leq_{p} \quad \operatorname{KNAPSACK}\left(U, w, v, C^{\prime}\right)
$$

Please complete their details. Explicitly and formally writing them will help understand the important notion of reduction

