Polynomial Time Reduction

- Polynomial Time Reduction Definition
- Reduction by Equivalence
- Reduction from Special Cases to General Case
- Reduction by Encoding with Gadgets
- Transitivity of Reductions
- Decision, Search and Optimization Problem
- Self-Reducibility

Imdad ullah Khan

Problem A is polynomial time reducible to Problem B, $A \leq_p B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

If any algorithm for problem B can be used [called (once or more) with *'clever'* legal inputs] to solve any instance of problem A

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Theorem

G has an independent set of size *k* iff \overline{G} has a clique of size *k*

Recall that for G = (V, E) its complement is the graph $\overline{G} = (V, \overline{E})$, where $\overline{E} = \{(u, v) : (u, v) \notin E\}$

IMDAD ULLAH KHAN (LUMS)

Theorem

G has an independent set of size *k* iff \overline{G} has a clique of size *k*

Recall that for G = (V, E) its complement is the graph $\overline{G} = (V, \overline{E})$, where $\overline{E} = \{(u, v) : (u, v) \notin E\}$

An independent set of size 3

The same 3 vertices make a clique in \overline{G}

Problem A is polynomial time reducible to Problem B, $A \leq_{p} B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

 $CLIQUE(G, k) \leq_{p} IND-SET(G, k)$

Let $\mathcal A$ be an algorithm solving IND-SET $(\mathcal G,k)$ for any $\mathcal G$ and $k\in\mathbb Z$

Let [G, k] be an instance of the CLIQUE problem

- **1** Compute the complement \overline{G} of G
- **2** Call \mathcal{A} on $[\overline{G}, k]$
- 3 If it outputs **Yes**, output **Yes** for the problem CLIQUE(G, k)

4 Else output No

Algorithm \mathcal{B} solves CLIQUE(G, K) problem using the algorithm \mathcal{A} for IND-SET(G, k) problem

▷ Polytime

Why Study both CLIQUE or INDEPENDENT-SET

Theorem

G has an independent set of size *k* iff \overline{G} has a clique of size *k*

Given this complementary equivalence should we study both problems?

- Both are "hard" problems
- In practice an approximation algorithm is used for real world graphs
- Most real world graphs are very sparse
- Hence, their complements are very dense
- So applying the same algorithm on the complement will not be as efficient

Theorem: $S \subset V$ is independent set in G iff $V \setminus S$ is a vertex cover in G

1 If S is an independent set, then $\overline{S} = V \setminus S$ is a vertex cover

- For any edge (u, v), either $u \notin S$ or $v \notin S \implies$ either $u \in \overline{S}$ or $v \in \overline{S}$
- Hence \overline{S} is a vertex cover

2 If C is a vertex cover, then $\overline{C} = V \setminus C$ is an independent set

- For any edge (u, v) it cannot be that $u \notin C$ AND $v \notin C$
- It cannot be that $u \in \overline{C}$ and $v \in \overline{C}$
- Hence \overline{C} is an independent set

$\text{IND-SET}(G, k) \leq_p \text{VERTEX-COVER}(G, k')$

Let \mathcal{A} be an algorithm solving VERTEX-COVER(G, k) for any G and $k \in \mathbb{Z}$ Let [G, t] be an instance of the IND-SET problem

- **1** Call \mathcal{A} on [G, n-t]
- **2** If it outputs **Yes**, output **Yes** for IND-SET(G, t)

3 Else output No

 $Algorithm \ \mathcal{B} \ solves \ Independent-Set(G, \kappa) \ problem \ using the algorithm \ \mathcal{A} \ for \ Vertex-Cover \ problem$