Algorithms

Polynomial Time Reduction

■ Polynomial Time Reduction Definition

- Reduction by Equivalence
- Reduction from Special Cases to General Case
- Reduction by Encoding with Gadgets
- Transitivity of Reductions

■ Decision, Search and Optimization Problem

- Self-Reducibility

Imdad ullah Khan

Polynomial Time Reduction

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

If any algorithm for problem B can be used [called (once or more) with 'clever' legal inputs] to solve any instance of problem A

Subroutine for B takes an instance y of B and returns the solution $B(y)$

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms $B(y)$ to $A(x)$

Reduction by (Complementary) Equivalence

Theorem

G has an independent set of size k iff \bar{G} has a clique of size k

Recall that for $G=(V, E)$ its complement is the graph
$\bar{G}=(V, \bar{E})$, where $\bar{E}=\{(u, v):(u, v) \notin E\}$

G

\bar{G}

Reduction by (Complementary) Equivalence

Theorem

G has an independent set of size k iff \bar{G} has a clique of size k

Recall that for $G=(V, E)$ its complement is the graph
$\bar{G}=(V, \bar{E})$, where $\bar{E}=\{(u, v):(u, v) \notin E\}$

An independent set of size 3

The same 3 vertices make a clique in \bar{G}

Reduction by (Complementary) Equivalence

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

$$
\operatorname{CLIQUE}(G, k) \leq_{p} \quad \operatorname{IND}-\operatorname{SET}(G, k)
$$

Let \mathcal{A} be an algorithm solving $\operatorname{IND-SET}(G, k)$ for any G and $k \in \mathbb{Z}$
Let $[G, k$] be an instance of the CLIQUE problem
1 Compute the complement \bar{G} of G
\triangleright Polytime
2 Call \mathcal{A} on [$\bar{G}, k]$
3 If it outputs Yes, output Yes for the problem $\operatorname{Clique}(G, k)$
4 Else output No

Algorithm \mathcal{B} solves CLIqUE (G, K) problem using the algorithm \mathcal{A} for $\operatorname{IND-SET}(G, k)$ problem

Why Study both CLIQUE or INDEPENDENT-SET

Theorem

G has an independent set of size k iff \bar{G} has a clique of size k

Given this complementary equivalence should we study both problems?

- Both are "hard" problems
- In practice an approximation algorithm is used for real world graphs
- Most real world graphs are very sparse
- Hence, their complements are very dense

■ So applying the same algorithm on the complement will not be as efficient

Reduction by (Complementary) Equivalence

Theorem: $S \subset V$ is independent set in G iff $V \backslash S$ is a vertex cover in G

1 If S is an independent set, then $\bar{S}=V \backslash S$ is a vertex cover

- For any edge (u, v), either $u \notin S$ or $v \notin S \Longrightarrow$ either $u \in \bar{S}$ or $v \in \bar{S}$
- Hence \bar{S} is a vertex cover

2 If C is a vertex cover, then $\bar{C}=V \backslash C$ is an independent set

- For any edge (u, v) it cannot be that $u \notin C$ and $v \notin C$
- It cannot be that $u \in \bar{C}$ and $v \in \bar{C}$
- Hence \bar{C} is an independent set

Reduction by (Complementary) Equivalence

$$
\operatorname{IND-SET}(G, k) \leq_{p} \quad \operatorname{VERTEX}-\operatorname{COVER}\left(G, k^{\prime}\right)
$$

Let \mathcal{A} be an algorithm solving $\operatorname{VERTEX-\operatorname {Cover}(G,k)\text {forany}G\text {and}k\in \mathbb {Z},~(~}$ Let $[G, t$] be an instance of the IND-SET problem

1 Call \mathcal{A} on [$G, n-t$]
2 If it outputs Yes, output Yes for $\operatorname{Ind-Set}(G, t)$
3 Else output No
\mathcal{B} takes an instance $[G, k]$ of Independent-Set returns YES if G has an indep.set of size k else returns NO

Algorithm \mathcal{B} solves Independent-Set (G, K) problem using the algorithm \mathcal{A} for Vertex-Cover problem

