
CS-310 Algorithms

Problem Set: Dynamic Programming

Problem 1. The counting sums problem is to count the number of ways a number can be writ-
ten as the sum of two or more positive integers. For example, we can write 6 as the sum of two
or more positive integers in the following ways

5 + 1 = 6
4 + 2 = 6

4 + 1 + 1 = 6
3 + 3 = 6

3 + 2 + 1 = 6
3 + 1 + 1 + 1 = 6

2 + 2 + 2 = 6
2 + 1 + 1 + 2 = 6

2 + 1 + 1 + 1 + 1 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Using a dynamic programming approach, write an algorithm to determine the number of ways
100 can be written as the sum of two or more positive integers.

Problem 2. Consider the triangle below constructed such that the nth row contains n numbers.
Suppose, starting at the top of the triangle, we have to move to adjacent numbers in the row
below such that the sum of the selected numbers is maximum. For example, in the following
triangle, the maximum total from top to bottom is 23 given by the path of numbers shown in
red, i.e. 3 + 7 + 4 + 9 = 23

3
7 4

2 4 6
8 5 9 3

Note that there are a total of 2n−1 paths (where n is the number of rows in the triangle) from
the top to the bottom of the triangle. Therefore, it is not feasible to find the maximum sum that
can obtained by the allowed movement when n is large. Devise a dynamic programming solution
to find the maximum possible sum and analyze the running time of your solution.

Dynamic Programming 1



CS-310 AlgorithmsProblem 3. The zombie apocalypse has occurred, and you and a group of friends have managed
to survive for the moment. You are currently bunkered in a government safe-house that has an
electric fence around it, with sensors attached which indicate when zombies are approaching. At
minute i, your sensors indicate that xi zombies are approaching. If they cross the fence, they
will attack the safe-house. But as they are right on the fence, you have the choice of ’zapping’
the zombies by discharging the capacitors attached to the fence. Unfortunately, the capacitors
need time to recharge i.e. if you let the fence charge for j minutes, you will have enough charge
to zap dj zombies.

Example: Suppose (x1,x2,x3,x4) = (1, 10, 10, 1) and (d1,d2,d3,d4) = (1, 2, 4, 8). The best solution
would be to zap at times 3 and 4, since this would zap a total of 5 zombies.

1. Construct an instance of the problem for which the following “greedy" algorithm does
not produce an optimal solution. Intuitively, the greedy algorithm figures out how many
minutes (j) are needed to zap the zombies in the last time slot. It zaps during that last
time slot, and then accounts for the j minutes required to recharge for that last time slot,
and recursively considers the best solution for the smaller problem of size n − j.

Algorithm 1 :
function BadZap((x1, · · · , xn),(d1, · · · , dn))

Compute the smallest j such that dj ≥ xn. Set j = n if no such j exists
Zap fence at time n.
if n > j then

return min(dj, xn) + BadZap((x1, ..., xn−j), (d1, ..., dn−j))
else

return min(dj, xn)

2. Given two arrays (x1, · · · , xn) and (d1, · · · , dn), devise an algorithm which zaps the most
zombies and produces the optimal times to zap the zombies. Analyze the runtime of your
algorithm.

Problem 4. Aiman uses her cellphone for mi minutes in a month i. She can use the rob-you-as-
you-go plan and pay ri for each minute (hence her cost for a month i is miri). She can also sign
up for the rob-you-in-bulk plan in which she pays a flat monthly rate of c, but she must also agree
to a 6-month contract by which she must continue the plan for 6 months. To simplify, assume
the 6-month contract ends after 6 months and does not extend on a month-to-month basis as
many cellphone plans do. Given the minutes (m1, · · · , mn) and cost parameters (r1, ...rn) for n
months and the fixed cost c, Aiman wishes to find the cheapest way to provide herself with the
cellphone service.

1. Describe a strategy for solving the problem by formulating a relation of the solution to the
problem of size n to the solutions of problems of smaller sizes.

Dynamic Programming 2



CS-310 Algorithms2. Devise a polynomial-time algorithm of the form CheapestService((m1, · · · , mn),(r1, · · · , rn),c)
which computes the minimum cost for Aiman (the actual decisions of which plan to use
for each month are not needed). Analyze the running time of your algorithm.

Problem 5. Consider a directed graph G = (V, E), V = {v1, v2, · · · , vn}. The following two
properties make G an ordered graph:

(i) Each directed edge (vi, vj) is from a node with lower index to a node with higher index i.e.
∀(vi, vj) ∈ E, i < j

(ii) Each node except vn has out degree atleast 1, i.e. ∀ vi, i = 1, 2, · · · , n − 1, there is at least
one edge of the form (vi, vj)

The length of a path is the number of edges it contains. Give an efficient algorithm using dynamic
programming which finds the length of the longest path P in an ordered graph G, such that P
begins at v1 and ends at vn. Analyze the correctness and running time of your algorithm.

Problem 6. Recall the coin change problem: Coins of a set of denominations (values) are
available to a cashier who needs to provide change for a given amount V , such that the number of
coins returned in exchange for V is minimum. We assume an infinite supply of each denomination.
Also recall that the greedy approach does not produce the optimal result for any given set of
denominations. Devise a dynamic programming algorithm which, given a set of denominations
D = {d1, · · · , dk} and value V , produces the optimal result for the coin change problem. Briefly
argue about the optimal substructure property of the problem.

Problem 7. Recall the definitions of a substring of a string. The longest common substring
problem is as follows. Given two strings, find the longest common substring of the two strings.
For example, if A=“abcdefgyu" and B=“bcdtyu", then the longest common substring of A and
B is “bcd" of length 3. Devise a dynamic programming solution to find the longest common
substring of two given strings. [Hint: Find the length of the longest common suffix for all
substrings of both strings and store these lengths in a table.]

Problem 8. Recall the definitions of a subsequence of a sequence. The longest common subse-
quence problem is as follows. Given two sequences, find the length of longest subsequence present
in both of them. A subsequence is a sequence that appears in the same relative order, but not
necessarily contiguous. For example, “abc”, “abg”, “bdf”, “aeg”, “acefg”, etc. are subsequences
of “abcdefg”. Briefly argue about the optimal substructure and overlapping subproblems of this
problem.

1. Devise a dynamic programming solution to find the length of longest common subsequence
of two given sequences S and T . [Hint: Look at the length of the longest common
subsequence of a prefix of S of length i and a prefix of T of length j, running over all pairs
of prefixes, and consider the two cases: S[i] = T [j] and S[i] ̸= T [j].]

2. Describe how you would find the actual longest common subsequence using the algorithm
you devised in the previous part of this question.

Dynamic Programming 3


