
CS-310 Algorithms

Problem Set: Greedy Algorihtms

Problem 1. Recall the interval scheduling problem. Given a set of requests r1, r2, · · · , rn, the
start and finish time of request ri is denoted by si and fi. Requests are compatible if they do
not overlap in time. In order to find the largest compatible subset of requests, we proved in class
that scheduling the requests by earliest finishing time is optimal.

1. Suppose that instead of always selecting the first request to finish, we instead select the
last request to start that is compatible with all previously selected requests, i.e. requests
are scheduled by latest starting time. Describe how this approach is a greedy algorithm,
and prove that it yields an optimal solution.

2. Suppose that each request ri is assigned a value vi. The objective is no longer to maximize
the number of requests processed, but instead to maximize the total value of the requests
processed, i.e. we want to choose a set A of compatible requests such that ∑

vi∈A vi is
maximum. This is called the weighted interval scheduling problem. Is the earliest finishing
time greedy algorithm an optimal solution to this problem? Justify your answer.

Problem 2. An optimal greedy algorithm for job scheduling is the so-called STCF: Shortest-
Time-to-Completion-First. Given n jobs, where job ji has starting time si and processing time
pi, at each point, the available job with the shortest remaining processing time is scheduled.
Write pesudo-code to implement this in O(n log n). Briefly explain the runtime of the algorithm.
[Hint: You can use a priority queue to solve this.]

Problem 3. Suppose a job ji is given by two numbers di and pi, where di is the deadline and pi

is the penalty. The length of each job is equal to 1 minute. All n such jobs are to be scheduled,
but only one job can run at any given time. If job ji does not complete before its deadline di,
its penalty pi should be paid. Design a greedy algorithm to find a schedule which minimizes the
sum of penalties and prove its optimality.

Problem 4. Jane has bought a new house and wants to have a house-warming party. She is
deciding whom to invite from the n people she knows. She has made up a list of all pairs of these
people who know each other. Assuming that all invitees come to the party, she wants to invite as
many people as possible such that each person should have at least five other people whom they
know and at least five other people whom they do not know. Give an efficient algorithm that
takes as input the list of n people and the list of all pairs who know each other and outputs a
largest subset of these n people which satisfies the constraints. Briefly argue about the optimatily
of your algorithm, i.e. it indeed selects the subset with the largest possible number of invitees.

Greedy Algorihtms 1



CS-310 AlgorithmsProblem 5. A group of friends want to hike a canyon trail. They collectively that for safety
reasons, they do not want to hike in the dark after nightfall. On a map, they have identified a
series of stopping points for camping along the route. We make the following assumptions:

• The group can hike d km per day irrespective of area, weather conditions etc.
• The distance between two adjacent stopping points is at most d km.
• The first and last stops are at most d km from the start and end of the trail respectively.
• The group has complete information of the distances between stopping points on their map.

The group wants to minimize the number of camping stops they make. Devise a greedy algorithm
for determining the set of stopping points the group should camp at such that the number of
stops is minimum.
Hint: The group should hike as much as possible during the day.

Problem 6. A thief enters a store and sees a set I of n items, I = {a1, a2, · · · , an}. Each item
has an associated weight wi and value vi. Ideally, the thief would like to steal everything in order
to gain maximum benefit. However, there is only so much he can carry. The thief has a knapsack
with capacity C. The thief now has to determine which items to steal so that their total weight
does not exceed C and their total value is maximum.

1. Suppose the items are such that a fraction of an item can be taken, i.e. the thief can take
some part of an item (for example, 0.4wi of ai) and leave the remaining part. This is called
the Fractional Knapsack Problem. Let A ⊂ I be the subset of items that the thief steals.
Devise an O(n log n) greedy algorithm to find the subset A such that ∑

ai∈A wi < C and∑
ai∈A vi is maximum.

2. Suppose items can be taken as a whole, i.e. the thief can only take or leave an item; he
can not take a fraction of an item. This is called the Binary Knapsack Problem. Does your
greedy algorithm for the fractional version of the problem (previous question) still find an
optimal solution? Justify your answer.

Problem 7. Coins of a set of denominations (values) are available to a cashier who needs to
provide change for a given amount V , such that the number of coins returned in exchange for V
is minimum. We assume an infinite supply of each denomination.

1. Given the denomination set {1, 5, 10}, devise a greedy algorithm to find the minimum
number of coins, that can be exchanged for V .

2. Is your greedy algorithm optimal for any given set of denominations? Justify.

Problem 8. What is an optimal Huffman code for the following set of frequencies, based on the
first 8 Fibonacci numbers? a : 1 b : 1 c : 2 d : 3 e : 5 f : 8 g : 13 h : 21
Can you generalize your answer to find the optimal code when the frequencies are the first n
Fibonacci numbers?

Greedy Algorihtms 2



CS-310 AlgorithmsProblem 9. Consider the Huffman encoding scheme. Prove that:

1. If some character occurs with frequency more than 2
5 , then there is guaranteed to be a code

of length 1.

2. If all characters occur with frequency less than 1
3 , then there is guaranteed to be no code

of length 1.

Problem 10. Suppose a newly developed ’ternary’ hard disk can store values 0, 1, or 2 (instead
of just 0 or 1). To take advantage of this new technology, provide a modified Huffman algorithm
for compressing sequences of characters from an alphabet of size n, where the characters occur
with known frequencies f1, f2, · · · , fn. Your algorithm should be lossless and optimal, i.e. it
should encode each character with a variable-length code over the values 0, 1, 2 such that no
code is a prefix of another code and should obtain the maximum possible compression. Prove
(informally) the correctness of your algorithm.

Greedy Algorihtms 3


