Problem Set: Graphs & Trees

Problem 1. Show that any connected graph on n vertices has at least n-1 edges.

Problem 2. Let G be a graph such that the degree of each vertex is ≥ 2 . Prove that G has at least one cycle.

Problem 3. Prove that for any graph G, if G is disconnected, then \overline{G} is connected.

Problem 4. Prove that the number of vertices of odd degree in any graph G is even.

Problem 5. Let G be a simple graph. Show that an edge e is a cut edge, if and only if e is not part of any cycle in G.

Problem 6. Prove that if a graph has exactly two vertices of odd degree, then there is a path from one of them to the other.

Problem 7. Let F be a forest with k components. Show that F has n - k edges.

Problem 8. Let G be a connected graph. Prove that in G - v (the graph obtained by removing the vertex v and its incident edges), every connected component has a vertex w_i adjacent to v.

Problem 9. Let G be a simple graph whose vertices all have degree at least k, were $k \ge 1$. Prove:

- 1. G contains a path of length k.
- 2. If $k \ge 2$ then G contains a cycle of length at least k.

Problem 10. Show that in every simple graph there is a path from any vertex of odd degree to some other vertex of odd degree.

Problem 11. Show that a simple graph with *n* vertices and *k* connected components has at most $\frac{(n-k)(n-k+1)}{2}$ edges.

Problem 12. Prove the following theorem: A full *m*-ary tree with

- 1. *n* vertices has i = (n-1)/m internal vertices and l = [(m-1)n+1]/m leaves
- 2. *i* internal vertices has n = mi + 1 vertices and l = (m 1)i + 1 leaves
- 3. l leaves has n = (ml-1)/(m-1) vertices and i = (l-1)/(m-1) internal vertices.

Problem 13. We hinted at the proofs of all of the following statements about tree. In this question you are asked to give their formal but brief proofs. Note: Every tree T = (V, E), (|V| = n, |E| = m) satisfies the following properties.

CS-310-Algorithms

- 2. There is a unique path between every pair of vertices
- 3. T is an edge-maximal acyclic graph (i.e. adding any edge to T creates a cycle)
- 4. T is an edge-maximal acyclic graph (i.e. Adding any edge to T creates a cycle)
- 5. Every edge in ${\cal T}$ is a cut-edge
- 6. T is an edge-minimal connected graph (i.e. Removing any edge disconnects T)
- 7. T has at least two leaves