Problem Set: Searching and Sorting

Problem 1. Suppose you are given an array A of n distinct positive integers. Write an algorithm that will output one element x of A such that x is among the top 75% elements of A. Note that the top 75% elements of A are the last 75% elements when A is sorted. Your algorithm should not take more than 0.25n comparisons. Only comparisons count! All other arithmetic/memory operations are free.

Problem 2. Given an array A of $n \ge 10000$ distinct positive integers. Write an algorithm that will output one element x of A such that x is not among the top 5 elements of A, neither is it among the bottom 5 elements of A. Note that the top and bottom 5 elements of A are the first 5 and the last 5 elements when A is sorted. Your algorithm should not take more than say 50 comparisons. Only comparisons count! All other arithmetic/memory operations are free.

Problem 3. Suppose we are given two *n*-element sorted arrays A and B that should not be viewed as sets (that is, A and B may contain duplicate entries). Describe an O(n)-time method for computing an array representing the set $A \cup B$ (with no duplicates).

Problem 4. Given an array of numbers, $(x_1, x_2, ..., x_n)$, the **mode** is the value that appears the most number of times in this array. Give an efficient algorithm to compute the mode for an array of n numbers. What is the running time of your method?

Problem 5. Suppose you're given an integer array A of n integers. You want to figure out the number of duplicates (an integer that appears more than once) in A.

Algorithm 1 : Counting Duplicates

```
count \leftarrow 0
for i = 1 to n do
for j = i + 1 to n do
if A[i] = A[j] then
count \leftarrow count + 1
return count
```

i. How many comparisons the above algorithm perform?

ii. Devise a better algorithm for this problem.

Problem 6. Suppose you are given an array A of n distinct integers and an integer $z \notin A$. You want to figure out the number of pairs in the array that sum to z. Again there's a simple $\frac{n(n-1)}{2}$ algorithm for solving this problem (which is very similar to the above duplicate counting algorithm). Devise a better algorithm for this problem.

CS-310 Algorithms write insertion sort as a recursive algorithm. That will work as follows: Given an array A of n distinct integers, we recursively sort A[1...n-1] and then insert A[n] into the left part (which is already sorted). Suppose to insert A[n] you use linear search (we could use binary search though).

Note: This approach is sometimes called 'decrease and conquer' rather than 'divide and conquer', as we decrease or reduce problem instance to a smaller instance of the same problem and conquer by extending solution of smaller instance to obtain solution tp original problem.

- i Write details of this algorithm in the pseudocode as given above (carefully state its base cases(s)).
- ii Express your algorithm's runtime (number of comparisons) as a recurrence relation.
- iii Using the recursion tree approach find a closed form for the runtime of your algorithm.

Problem 8. Compare the time efficiency of the below given iterative merge sort algorithm with the recursive approach discussed in class.

Following is the pseudocode for iterative merge sort where A is the array to be sorted and *length* is the length of the array:

Algorithm 2 : Iterative Implementation of MERGESORT

```
 \begin{array}{ll} \mbox{if } length < 2 \ \mbox{then} \\ \mbox{return} \\ \mbox{step} \leftarrow 1 \\ \mbox{while } step < length \ \mbox{do} \\ stL \leftarrow 0 \\ stR \leftarrow step \\ \mbox{while } stR + step \leq length \ \mbox{do} \\ MERGE(A, stL, stL + step, stR, stR + step) \\ stL \leftarrow stR + step \\ stR \leftarrow stL + step \\ \mbox{if } stR < length \ \mbox{then} \\ MERGE(A, stL, stL + step, stR, length) \\ step \leftarrow step \times 2 \end{array}
```

And the following is the pseudocode for the merge operation used in the previous algorithm:

68-310 Algorithms

function MERGE(A, lSt, lEnd, rSt, rEnd) $Left \leftarrow A[lSt, \dots, lEnd]$ \triangleright Copies elements of A from lSt to lEnd to Left $Right \leftarrow A[rSt, \dots, rEnd]$ $i \leftarrow 0$ $j \leftarrow 0$ for k = lSt to rEnd do if Left[i] < Right[j] then $array[k] \leftarrow Left[i]$ $i \leftarrow i + 1$ else $array[k] \leftarrow Right[j]$ $j \leftarrow j + 1$ if i = lEnd + 1 - lSt then for l = k + 1 to rEnd do $array[l] \leftarrow Right[j]$ $i \leftarrow i + 1$ return if j = rEnd + 1 - lSt then for l = k + 1 to rEnd do $array[l] \leftarrow Left[i]$ $i \leftarrow i + 1$ return

Problem 9. Given a list of n distinct positive integers, partition the list into two sublists, each of size $\frac{n}{2}$, such that the difference between the sums of the integers in the two sub-lists is maximized. Write a $O(n \log n)$ recursive algorithm for this problem. You may assume that n is a multiple of 2.

Problem 10. Suppose we are given the GPA of a set of students and we want to find the top k - th percentile of students. Devise an algorithm to solve this problem in the smallest possible time complexity (number of comparisons).

Problem 11. Show that in order to find the maximum and minimum of an array, in the worst case $\frac{3n}{2} - 2$ comparisons are required.

Hint: Check how many numbers are there that are either minimum or maximum and how is their count effected by a comparison. It should be noted that there would be one maximum and minimum at the end of the algorithm.

Problem 12. Suppose you are given an array A[1...n] of sorted integers that has been circularly shifted k positions to the right. For example, [35, 42, 5, 15, 27, 29] is a sorted array that has been shifted k = 2 positions. We can obviously find the largest element in O(n) time. Describe an $O(\log n)$ time algorithm to find the maximum in A.

Problem 13. 1. Given two sets X and Y, devise an efficient algorithm to determine whether X and Y are disjoint, i.e. their intersection is zero. Analyze the complexity of your algorithm in terms of |X| and |Y|. Don't forget to consider all the cases of sizes of arrays.

- **CS-310** i**Algorithms** algorithm to compute the union of sets X and Y where m = max(|X|, |Y|). The output should be a single array of distinct elements that forms the union of the two sets.
 - (a) Assume that X and Y are unsorted. Give an $O(m\log m)$ algorithm for the problem.
 - (b) Assume that X and Y are sorted. Give an O(m) algorithm for the problem.

Problem 14. Given a binary string (string of 1's and 0's), count the number of substrings that start and end with a 1.

Problem 15. Suppose the number of inversions in an array A of size n is 10, where 10 < n. Which of the two is more suitable for sorting A: Insertion Sort or Bubble Sort. Explain your answer.