
CS-310 Algorithms

Problem Set: Searching and Sorting

Problem 1. Suppose you are given an array A of n distinct positive integers. Write an
algorithm that will output one element x of A such that x is among the top 75% elements
of A. Note that the top 75% elements of A are the last 75% elements when A is sorted.
Your algorithm should not take more than 0.25n comparisons. Only comparisons count!
All other arithmetic/memory operations are free.

Problem 2. Given an array A of n ≥ 10000 distinct positive integers. Write an algorithm
that will output one element x of A such that x is not among the top 5 elements of
A, neither is it among the bottom 5 elements of A. Note that the top and bottom 5
elements of A are the first 5 and the last 5 elements when A is sorted. Your algorithm
should not take more than say 50 comparisons. Only comparisons count! All other
arithmetic/memory operations are free.

Problem 3. Suppose we are given two n-element sorted arrays A and B that should not
be viewed as sets (that is, A and B may contain duplicate entries). Describe an O(n)-time
method for computing an array representing the set A ∪B (with no duplicates).

Problem 4. Given an array of numbers, (x1, x2, ..., xn), the mode is the value that
appears the most number of times in this array. Give an efficient algorithm to compute
the mode for an array of n numbers. What is the running time of your method?

Problem 5. Suppose you’re given an integer array A of n integers. You want to figure
out the number of duplicates (an integer that appears more than once) in A.

Algorithm 1 : Counting Duplicates
count← 0
for i = 1 to n do

for j = i + 1 to n do
if A[i] = A[j] then

count← count + 1
return count

i. How many comparisons the above algorithm perform?

ii. Devise a better algorithm for this problem.

Problem 6. Suppose you are given an array A of n distinct integers and an integer
z /∈ A. You want to figure out the number of pairs in the array that sum to z. Again
there’s a simple n(n−1)

2 algorithm for solving this problem (which is very similar to the
above duplicate counting algorithm). Devise a better algorithm for this problem.

Searching and Sorting 1



CS-310 AlgorithmsProblem 7. We can rewrite insertion sort as a recursive algorithm. That will work as
follows: Given an array A of n distinct integers, we recursively sort A[1 . . . n − 1] and
then insert A[n] into the left part (which is already sorted). Suppose to insert A[n] you
use linear search (we could use binary search though).
Note: This approach is sometimes called ’decrease and conquer’ rather than ’divide
and conquer’, as we decrease or reduce problem instance to a smaller instance of the
same problem and conquer by extending solution of smaller instance to obtain solution
tp original problem.

i Write details of this algorithm in the pseudocode as given above (carefully state its
base cases(s)).

ii Express your algorithm’s runtime (number of comparisons) as a recurrence relation.

iii Using the recursion tree approach find a closed form for the runtime of your algorithm.

Problem 8. Compare the time efficiency of the below given iterative merge sort algorithm
with the recursive approach discussed in class.

Following is the pseudocode for iterative merge sort where A is the array to be sorted
and length is the length of the array:

Algorithm 2 : Iterative Implementation of MergeSort
if length < 2 then

return ▷ the array is already sorted
step← 1
while step < length do

stL← 0
stR← step
while stR + step ≤ length do

Merge(A, stL, stL + step, stR, stR + step)
stL← stR + step
stR← stL + step
if stR < length then

Merge(A, stL, stL + step, stR, length)
step← step× 2

And the following is the pseudocode for the merge operation used in the previous
algorithm:

Searching and Sorting 2



CS-310 AlgorithmsAlgorithm 3 : Merge
function Merge(A, lSt, lEnd, rSt, rEnd)

Left← A[lSt, . . . , lEnd] ▷ Copies elements of A from lSt to lEnd to Left
Right← A[rSt, . . . , rEnd]
i← 0
j ← 0
for k = lSt to rEnd do

if Left[i] ≤ Right[j] then
array[k]← Left[i]
i← i + 1

else
array[k]← Right[j]
j ← j + 1

if i = lEnd + 1− lSt then
for l = k + 1 to rEnd do

array[l]← Right[j]
j ← j + 1

return
if j = rEnd + 1− lSt then

for l = k + 1 to rEnd do
array[l]← Left[i]
i← i + 1

return

Problem 9. Given a list of n distinct positive integers, partition the list into two sub-
lists, each of size n

2 , such that the difference between the sums of the integers in the two
sub-lists is maximized. Write a O(n log n) recursive algorithm for this problem. You may
assume that n is a multiple of 2.

Problem 10. Suppose we are given the GPA of a set of students and we want to find
the top k − th percentile of students. Devise an algorithm to solve this problem in the
smallest possible time complexity (number of comparisons).

Problem 11. Show that in order to find the maximum and minimum of an array, in the
worst case 3n

2 − 2 comparisons are required.
Hint: Check how many numbers are there that are either minimum or maximum and
how is their count effected by a comparison. It should be noted that there would be one
maximum and minimum at the end of the algorithm.

Problem 12. Suppose you are given an array A[1...n] of sorted integers that has been
circularly shifted k positions to the right. For example, [35, 42, 5, 15, 27, 29] is a sorted
array that has been shifted k = 2 positions. We can obviously find the largest element
in O(n) time. Describe an O(log n) time algorithm to find the maximum in A.

Problem 13. 1. Given two sets X and Y , devise an efficient algorithm to determine
whether X and Y are disjoint, i.e. their intersection is zero. Analyze the complexity
of your algorithm in terms of |X| and |Y |. Don’t forget to consider all the cases of
sizes of arrays.

Searching and Sorting 3



CS-310 Algorithms2. Devise an efficient algorithm to compute the union of sets X and Y where m =
max(|X|, |Y |). The output should be a single array of distinct elements that forms
the union of the two sets.

(a) Assume that X and Y are unsorted. Give an O(m log m) algorithm for the
problem.

(b) Assume that X and Y are sorted. Give an O(m) algorithm for the problem.

Problem 14. Given a binary string (string of 1’s and 0’s), count the number of sub-
strings that start and end with a 1.

Problem 15. Suppose the number of inversions in an array A of size n is 10, where
10 < n. Which of the two is more suitable for sorting A: Insertion Sort or Bubble Sort.
Explain your answer.

Searching and Sorting 4


