Problem Set: Complexity Theory

Note: NP-Complete and NP-Hard are used as names of the sets of NP-complete and NP-hard problems in this document.

Problem 1. Prove that if a problem $A \in P$, then $A \in NP$.

Problem 2. Let $A \in P$ and $B \leq_p A$. Prove that $B \in P$.

Problem 3. Prove that " \leq_p " is transitive, i.e if $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$.

Problem 4. Assuming $P \neq NP$, prove or give a counter example for the following statements.

- 1. NP-Complete = NP
- 2. *NP*-Complete $\cap P = \emptyset$
- 3. NP-Hard = NP

Problem 5. Let A be a NP-Complete problem and B and C are any other problems (may or may not be in NP). Suppose that B is polynomial time reducible to A and A is polynomial-time reducible to C. Prove whether or not the following statements are true.

- 1. C is NP-complete.
- 2. B is NP-Hard.
- 3. C is NP-Hard

Problem 6. Prove that if any *NP*-complete problem is polynomial-time solvable, then P = NP.

Problem 7. Prove that the clique problem is *NP*-complete. *Hint:* Show that 3SAT is polynomial time reducible to Clique problem.

The Clique Problem: Given a graph G, the clique problem asks to find the largest clique in G, (A clique of order k is a complete graph on k vertices).

Decision Version: Given a graph G and an integer k, is there a clique of size at least k in G?

Problem 8. Prove that Vertex Cover problem is polynomial time reducible to Dominating Set problem. *Hint:* Replace every edge (u, v) in G with a triangle (u, v, w) to form G', where $w \in G'$ and $w \notin G$ (see Figure 1).

The Vertex Cover Problem: Given a graph G and a number k, decision version of the vertex cover problem asks if there is a subset of size at most k in V(G) that covers all edges (i.e. every edge in G intersects the set subset).

Dominating Set Problem Given a graph G(V, E) and a number k, decision version of

CSH310hAlgorithms asks if there is a dominating set of size k in V(G). Dominating set is a subset $A \subset V$ such that each vertex is either in A or has a neighbor in A.

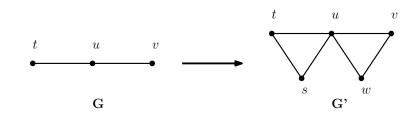


Figure 1: Vertex Cover input G transformed to Dominating Set input G'

Problem 9. Prove that 3-SAT problem is polynomial time reducible to 3-coloring problem.

k-Coloring Problem Given a graph G, is there a coloring of the nodes with k colors such that the endpoints of every edge are colored differently?

Hint: For every variable x_i . create two nodes $x_i, \overline{x_i}$ and connect them. Make three special nodes $\{Base, True, False\}$ and connect them to form triangle. Now connect every variable node to Base node, as shown in Figure

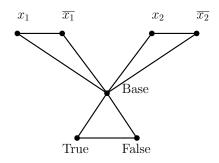


Figure 2: 3-SAT input transformed to 3-coloring input

Problem 10. Prove that Subset Sum problem is NP-complete.

Subset Sum Problem Given a set A of integers and an integer k, does there exist a subset of A such that the sum of its elements is equal to k?

Problem 11. Prove that Hamiltonian cycle problem is *NP*-complete.

Hamiltonian Cycle Problem Given a graph G on n vertices, is there a cycle on n vertices in the graph.

Problem 12. Prove that Hamiltonian Path problem is *NP*-Complete.

Hamiltonian Path Problem: Given a graph G, does G contain a path that visits every node exactly once?

Hint: Prove that Hamiltonian Cycle problem is polynomial time reducible to Hamiltonian Path problem. Pick any edge (u, v) in G, add two new vertices u_1, v_1 such that u_1 is only connected to u and v_1 is only connected to v.

Problem 13. Suppose we are given that the graph has no cycle. Design a polynomial time algorithm to find the longest s-t path. *Hint:* You don't have to design an algorithm, just model is as a problem we already studied.

CS-3:60 Algorithms roblem: Given a weighted graph G = (V, E) with $w : E \to R$ and two vertices $s \neq t \in V$, called the source and target vertex respectively, find a simple s - t path P of maximum total weight, where weight of a path is the sum of weights of its edges, i.e. $w(P) = \sum_{e \in P} w(e)$.

The decision version of the longest s - t-path is given an integer k, is there a s - t path of length at least k in G.