Problem Set: Complexity Theory

Note: $\quad N P$-Complete and $N P$-Hard are used as names of the sets of $N P$-complete and $N P$-hard problems in this document.

Problem 1. Prove that if a problem $A \in P$, then $A \in N P$.
Problem 2. Let $A \in P$ and $B \leq_{p} A$. Prove that $B \in P$.
Problem 3. Prove that " \leq_{p} " is transitive, i.e if $A \leq_{p} B$ and $B \leq_{p} C$, then $A \leq_{p} C$.
Problem 4. Assuming $P \neq N P$, prove or give a counter example for the following statements.

1. $N P$-Complete $=N P$
2. $N P$-Complete $\cap P=\emptyset$
3. $N P$-Hard $=N P$

Problem 5. Let A be a $N P$-Complete problem and B and C are any other problems (may or may not be in $N P$). Suppose that B is polynomial time reducible to A and A is polynomial-time reducible to C. Prove whether or not the following statements are true.

1. C is $N P$-complete.
2. B is $N P$-Hard.
3. C is $N P$-Hard

Problem 6. Prove that if any $N P$-complete problem is polynomial-time solvable, then $P=N P$.

Problem 7. Prove that the clique problem is $N P$-complete. Hint: Show that 3SAT is polynomial time reducible to Clique problem.
The Clique Problem: Given a graph G, the clique problem asks to find the largest clique in G, (A clique of order k is a complete graph on k vertices).
Decision Version: Given a graph G and an integer k, is there a clique of size at least k in G ?

Problem 8. Prove that Vertex Cover problem is polynomial time reducible to Dominating Set problem. Hint: Replace every edge (u, v) in G with a triangle (u, v, w) to form G^{\prime}, where $w \in G^{\prime}$ and $w \notin G$ (see Figure 11).
The Vertex Cover Problem: Given a graph G and a number k, decision version of the vertex cover problem asks if there is a subset of size at most k in $V(G)$ that covers all edges (i.e. every edge in G intersects the set subset).
Dominating Set Problem Given a graph $G(V, E)$ and a number k, decision version of

CSti310nAdgarithims asks if there is a dominating set of size k in $V(G)$. Dominating set is a subset $A \subset V$ such that each vertex is either in A or has a neighbor in A.

Figure 1: Vertex Cover input G transformed to Dominating Set input G^{\prime}

Problem 9. Prove that 3-SAT problem is polynomial time reducible to 3-coloring problem.
k-Coloring Problem Given a graph G, is there a coloring of the nodes with k colors such that the endpoints of every edge are colored differently?
Hint: For every variable x_{i}. create two nodes $x_{i}, \overline{x_{i}}$ and connect them. Make three special nodes $\{$ Base, True, False $\}$ and connect them to form triangle. Now connect every variable node to Base node, as shown in Figure

Figure 2: 3-SAT input transformed to 3-coloring input
Problem 10. Prove that Subset Sum problem is $N P$-complete.
Subset Sum Problem Given a set A of integers and an integer k, does there exist a subset of A such that the sum of its elements is equal to k ?

Problem 11. Prove that Hamiltonian cycle problem is $N P$-complete.
Hamiltonian Cycle Problem Given a graph G on n vertices, is there a cycle on n vertices in the graph.

Problem 12. Prove that Hamiltonian Path problem is $N P$-Complete.
Hamiltonian Path Problem: Given a graph G, does G contain a path that visits every node exactly once?

Hint: Prove that Hamiltonian Cycle problem is polynomial time reducible to Hamiltonian Path problem. Pick any edge (u, v) in G, add two new vertices u_{1}, v_{1} such that u_{1} is only connected to u and v_{1} is only connected to v.

Problem 13. Suppose we are given that the graph has no cycle. Design a polynomial time algorithm to find the longest $s-t$ path. Hint: You don't have to design an algorithm, just model is as a problem we already studied.

CStge10 Algepitthnnsroblem: Given a weighted graph $G=(V, E)$ with $w: E \rightarrow R$ and two vertices $s \neq t \in V$, called the source and target vertex respectively, find a simple $s-t$ path P of maximum total weight, where weight of a path is the sum of weights of its edges, i.e. $w(P)=\sum_{e \in P} w(e)$.

The decision version of the longest $s-t$-path is given an integer k, is there a $s-t$ path of length at least k in G.

