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1 Motivation and Definition

Consider a network of pipelines in Figure 1 along which oil can be sent from the source
s to the sink t. The goal is to ship as much oil from s to t as possible. There are two
restrictions: a given pipeline cannot carry more oil than the weight of the corresponding
edge. Secondly, no node can store any oil.
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Figure 1: An example network

In this network, we can send 2 units of flows along the path s, a, d, t. Another 2 units of
flow can go through the path s, c, e, t, as shown in Figure 2

It is natural to ask the following about the flow in the network. Is this the best flow,
i.e. is this the largest amount of oil that can be shipped? How do we measure the size
of flow? How do we determine that a given flow is the maximum possible? In order to
answer such questions, we first formalize the problem.

1.1 Formal definition of max flow problem

A flow network is a directed graph G = (V,E). Such a graph typically model a trans-
portation network whose edges carry traffic and vertices serve as switches to pass traffic
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Figure 2: Flow in a network

between different edges. Examples could be highway networks, where edges are roads
and vertices are interchanges or intersection, a communication networks where edges are
links and vertices are switches, a fluid networks where edges are pipelines and vertices
are junctures where pipes are plugged together. Such networks typically have capaci-
ties on edges indicating how much traffic can they carry, source nodes where traffic is
generated, and target nodes where traffic is consumed. We formalized all of these below.

Each edge e = uv ∈ E is associated with a nonnegative real number ce = cuv called
the capacity of the edge uv. Two designated nodes s (traffic generator) and t (traffic
consumer), where s is a source (deg−(s) = 0) and t is a sink (deg+(t) = 0).

A s− t flow or traffic through the network is given by assigning each edge e of G a real
number fe which does not exceed ce. Formally, a flow f is a mapping from E to real
numbers f : E → R satisfying the capacity and storage constraints. We denote by fe
the value of f at e, i.e. fe = f(e). The two constraints on the flow are as follows:

� capacity constraints: ∀ e ∈ E : 0 ≤ fe ≤ ce

� flow conservation constraints: ∀ v ∈ V , v ̸= s, t∑
e into v

fe︸ ︷︷ ︸
total flow incoming to v

=
∑

e out of v

fe︸ ︷︷ ︸
total flow outgoing from v

Basically, the capacity constraints says that flow through each edge is non-negative and
cannot exceed its capacity. The flow conservation constraints says that excepts for s and
t the total flow entering a vertex v, which is the sum of flow over all edges incoming to
v is equal to the total flow outgoing form v which is the sum of flow over all outgoing
edges from v.

The value or size of a flow f is the total amount of flow generated or sent out from s,
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i.e.
size(f) =

∑
e outgoing from s

fe

For notational convenience for a vertex v we define

f out(v) =
∑

e outgoing from v

fe and f in(v) =
∑

e incoming to v

fe.

Furthermore, for a set X ⊂ V , we define

f out(X) =
∑

e outgoing from X

fe and f in(X) =
∑

e incoming to X

fe.

With this notation
size(f) = f out(s).

Using flow conservation constraints, that we get

size(f) = f out(s) = f in(t).

In the example in Figure 2 the size of the flow is 6.

Problem 1 (Maximum-Flow). Given a flow network, find f such that size(f) is as
large as possible.

1.2 Structural bounds on size of a flow

Consider our running example network from Figure 1 and consider the cut [{s}, {s}] as
shown in Figure 3. Any flow that is generated from s, has to go through one of these
three edges, hence no flow can be of size bigger than 3 + 3 + 4 = 10.
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Figure 3: cut [{s}, {s}]
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The same is true for any cut, consider the cut [{s, a, b, c}, {d, e, t}] in Figure 4. Since s
is in the left side and t is in the right, any s− t flow must cross this cut (hence use one
of the edges from left side to the right), there cannot be a flow in this network of size
more than 2 + 1 + 5 = 8. This is a tighter bound than the one we got from the other
cut.
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Figure 4: cut [{s, a, b, c}, {d, e, t}]

Consider yet another cut [{t}, {t}] as in Figure 5. By the same reasoning as above we
get that any flow is of size at most 7.
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Figure 5: cut [{t}, {t}]

Notice that in all these cuts we have s on one side and t on the other side for obvious
reason, these are called s− t cuts. We formally define it as follows. A s− t cut, denoted
by [A,A] is a cut in the graph, i.e. A ⊂ V with the restriction that s ∈ A and t ∈ A.
Capacity of a s− t cut is the sum of capacities of edges going from A to Ā, i.e.

c([A,A]) =
∑

e outgoing from A

ce.

From the above examples, we get the following upper bound on any flow in G.

Lemma 2. Let f be a flow in G and let [A, Ā] be any s− t cut in G, then

size(f) ≤ c([A,A]).

5



Proof. Let [A,A] be any cut. By definition we know that

size(f) = f out(s)

= f out(s) +
∑

s ̸=v∈A

(
f out(v)− f in(v)

)
just adding a few 0’s

= f out(s) +
∑

s ̸=v∈A

f out(v)−
∑

s ̸=v∈A

f in(v)

= f out(A)− f in(A)

=
∑

e outgoing from A

fe −
∑

e incoming to A

fe flows on all other edges cancel

≤
∑

e outgoing from A

ce −
∑

e incoming to A

fe

≤
∑

e outgoing from A

ce

= c([A,A]).

It is also clear that although any cut provide an upper bound on the size of a flow, since
we are interested in the most tight bound, it makes sense to consider a s − t cut of
minimum capacity. In other words let [A∗, A∗] be a s − t cut with minimum capacity,
(this is called a Min-Cut). We get that

Fact 3.
size(f) ≤ c([A∗, A∗]).

2 Designing an Algorithm

There is no known dynamic programming algorithm for max-flow. We try out a greedy
strategy.

2.1 A Greedy Approach

The greedy approach builds up flow little bit at a time. Starting with a 0 flow, we add
flow via a path. We observe that it satisfies both the capacity and flow conservation
constraints. Consider the network and flow addition in Figure 6.

Can more flow be added? Notice that there is a s− t cut in this network of capacity 3
as shown in Figure 7, hence this flow is the maximum possible.
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Figure 6: Adding flows via paths
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Figure 7: s− t cut of capacity 3

The capacities don’t have to be 1 for such a greedy algorithm to work. Consider the
network in Figure 8 with all capacities 1 except the edge dt with capacity 2. Consider
the path s, a, d, t. The bottleneck (smallest capacity of an edge) in this path is 1, so we
add a flow of size 1 via this path. Next we add a flow of size 1 via the path s, c, e, t.
Next we add one unit of flow via the path s, b, d, t. reusing the edge dt still not violating
the capacity constraint.
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Figure 8: Greedy algorithm works for capacities greater than 1

The two shown cuts shown in Figure 9 that this indeed is a max-flow, because the
min-cut in this graph is of size 3.
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Figure 9: Min-Cut is of size 3

The important things to note here are:

� Adding a flow via a path equal to the bottleneck of that path doesn’t
violate the capacity constraints.

� Adding flow via paths ensures that flow conservation constraints remain
satisfied

� Both of the above facts ensures that any intermediate step of such a
greedy algorithm the flow indeed is a valid flow

2.2 Problem with Greedy Approach

Next, we identify problem with this algorithm, i.e. show with an example that this
approach doesn’t necessarily construct a max-flow. Then, we give a fix for the problem
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and design and analyze the final algorithm.

Consider the example in Figure 10. The given network has only 4 vertices, 5 edges
and all the capacities equal to 1. The max flow clearly is of size 2. But if our greedy
algorithm first chose the path s, a, b, t which is a valid s − t path we do not have any
more path, remaining in the graph to send flow over. At least not a path with non-zero
remaining capacity. Note that the problem is not the length of the path i.e. the number
of hops in the path, as in the following graph our algorithm could still get stuck. Here
we cannot directly add another unit of flow because there is no s − t path on which
we can send some flow yet do not exceed some capacity. Therefore, we need something
more.
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(b) Max-flow is of size 2

s

a

b

t

(c) Max-flow not produced if path s, a, b, t is
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(d) Problem is not the length of a path

Figure 10: Instance where the greedy algorithm so far does not produce max-flow

A more general way of pushing further flow is that we can push forward flow on edges
where some capacity is remaining. At the same time we will cancel flow on the edges
already carrying some flow, or think of it as pushing flow backward.

Consider the same example as in Figure 10 and suppose one unit of flow is already added
on the path s, a, b, t. If we think of canceling the flow on the edge ab, then we can add
another unit. Figure 11 illustrates this technique. We can add another unit of flow via
the path s, b, a, t (the blue path). But the edge ba doesn’t exist in the network, so we
cannot send any flow from b to a, but we can cancel the already existing flow on the
edge a to b. In this sense we end up getting the maximum flow in this network, where
all edges have flow 1, except the edge ab, where the red flow of 1 unit is canceled by the
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blue flow of 1 unit. Adding the red and blue flow, we get a total flow of size 2. Note
that this is the maximum flow and doesn’t violate any constraint.
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(a) Blue flow cancels the red flow
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1 − 1 = 0

(b) Total flow is the max-flow

Figure 11: Flow cancellation is the fix to the problem identified in Figure 10

It turns out that this cancellation of already existing flows over certain edges indeed is
the right framework to add more flow to an existing flow. A systematic way to search
for adding and canceling flow is to use the so-called residual network.

2.3 Residual Network

A residual network associated with a given flow, is a new network that represent places
where more flow can be added. This not only include edges where there is remaining
room to add flow but also edges where existing flow on some edges can be canceled.

Given a network G and a flow f on G, the residual graph Gf of G with respect to f is
defined as follows:

� Vertex set of Gf is the same as that of G

� For each e = uv of G on which fe < ce, there is an edge e = uv in Gf with a
capacity ce − fe > 0. These are called forward edges since on these edges we can
push forward ce− fe units of flow. ce− fe is the leftover or residual capacity on e.

� For each edge e = uv of G on which fe > 0, there is an edge e′ = vu in Gf

with a capacity of fe. These are called backward edges (note that the direction is
reversed). ce′ is fe since on e we can cancel or push backward fe units of flow.

Note that each edge e ∈ E(G) gives rise to one or two edges depending on fe and ce. So
Gf has at most twice as many edges as G. Since a zero flow (fe = 0 for all edges) is a
valid flow, the residual graph w.r.t the zero flow by the above definition is the same as
G itself.

In Figure 12, we give a couple of examples of residual networks.
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Flow network with flow shown in red The corresponding residual network
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Flow network with flow shown in red The corresponding residual network

Figure 12: Example flows and corresponding residual networks

2.4 Augmenting Paths

A simple s− t path (no vertex repeated) in the residual graph is called an augmenting
path, (because it is used to augment an existing flow). For a flow f and an augmenting
path P in Gf , let bottleneck(P, f) = mine∈P c′e be the minimum residual capacity of any
edge on P in Gf . Here c

′
e is the residual capacity of the edge e (its capacity in Gf ). We

use the following augment procedure to add flow to f .
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Algorithm 1 : Augment the flow f using the path P to output a flow f ′

function Augment(P, f)
b← bottleneck(P, f)
f ′ ← f ▷ Initialize f ′ by f
for each edge e = uv ∈ P do

if e is a forward edge then ▷ If e = uv is a forward edge with ≥ b residual
capacity

f ′
e ← fe + b ▷ Add b units of flow on edge uv

else if e is a backward edge then ▷ so vu is a forward edge with at least b
flow in f

f ′
vu ← fvu − b ▷ Cancel b units of flow on edge vu

2.5 Analysis of Augment Procedure

The only analysis we need here is to show correctness, i.e. the output of the Augment
procedure f ′ indeed is a flow. Later, we will show that size(f ′) > size(f) and call this
function in an algorithm to find max-flow.

Lemma 4. f ′ is a flow in G

Proof. To show that f ′ is a flow, we need to show that f ′ satisfies capacity constraint
on all edges of G and that it satisfies flow conservation constraint on all vertices of G.

Since f is a flow, capacity constraints on all edges not on P remain satisfied in f ′ too
(as it is just a copy). We only made changes to edges on P .

Let e = uv be an edge on P .

If e is a forward edge inGf , then by construction f ′
e = fe+b. By definition 0 < b ≤ ce−fe.

We have
0 ≤ fe ≤ f ′

e = fe + b ≤ fe + ce − fe = ce

On the other hand, if e = uv is a reverse edge with residual capacity fe, then by
construction of Gf the edge vu has a flow fe. So using the fact that 0 < b ≤ fe we have

ce ≥ fe ≥ f ′
e = fe − b ≥ fe − fe = 0.

Hence in both cases we get that the capacity constraint is satisfied on the edge e.

To show that flow conservation constraints are satisfied; again note that every thing
remain the same for vertices not on P . For a vertex v ̸= s, t on P there must be an
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edge of P incoming edge ein to v and an outgoing edge eout from v (as it is an internal
vertex on the path). Since f satisfied conservation condition on v. We will show that
the change in flow entering v by f ′ is the same as the flow exiting v.

There are four cases depending on whether ein and eout are forward or reverse edges.
We will discuss one or two of these cases the rest are very similar and mechanical proofs
using definitions.

Suppose both ein = xv and eout = vy are forward edges. Then by design f ′out(v) =
f out(v) + b as we f ′

vy = fvy + b and f ′in(v) = f in(v) + b as f ′
xv = fxv + b. Hence the

change in the flow incoming to v is the same as the change in flow outgoing from v.

In the case that ein = xv is a reverse edge and eout = vy is a forward edge. Then
by design f ′out(v) = f out(v) − b + b as f ′

vx = fvx − b (since vx is a reverse edge) and
f ′
vy = fvy + b (since vy is a forward edge). By the fact that the path is simple (v is not
repeated) we have f ′in(v) = f in(v) + 0. Hence the change in the flow incoming to v is
the same as the change in flow outgoing from v.

3 The Ford-Fulkerson Algorithm

Now, we are ready to give a complete algorithm for finding a Max Flow. This algorithm
is called the Ford Fulkerson Algorithm named after its developers.

Algorithm 2 : Ford-Fulkerson-Algorithm(G)

f ← 0 ▷ Initialize to a (valid) flow of size 0 (on every edge)
while TRUE do

Compute Gf

Find an s− t path P in Gf ▷ Using e.g. BFS
if no such path then

return f
else

f ←Augment(P, f)

We run this algorithm on the graph in Figure 12. The example run is shown in Figure 13
which is taken from the book, Algorithms, by Dasgupta, Papadimitriou, and Vazirani.

3.1 Analyzing the Algorithm: Termination and Running Time

So far, it is not clear whether the algorithm terminates at all. We will show that it does
terminate and will analyze its running time, and later prove it’s optimality.
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We first show that if all capacities are integer, then all the intermediate flows are integers.

Lemma 5. At every intermediate step of the above algorithm the flow at every edge fe
and capacities of every edge in Gf are integers.

Proof. The proof is by induction on iteration. The statement is clearly true after itera-
tion 0, as by construction fe = 0 and Gf = G where are all input capacities are integers
by assumption. At a given iteration given an integral flow f and integral capacities
in Gf , the capacity b of the bottleneck edge is an integer. The resulting flow hence
is an integer plus/minus b hence remains integral. Similarly capacities in the residual
graph.

Next, we show that every new flow is strictly larger than the previous one.

Lemma 6. Let f be a flow in G and let P be a s − t path in Gf . If f ′ is the flow
returned by the AUGMENT(P, f) function, then size(f ′) = size(f) + b, where b =
bottleneck(P, f).

Proof. Since b > 0, we immediately get that size(f ′) > size(f). The statement of
lemma follows from the definition of size(f ′). We know that size(f) = f out(s). Since P
is a s−t path in Gf the first edge e on P is an outgoing edge from s in Gf . Furthermore,
we know that deg−(s) = 0 in G, hence the edge on P incident to s in Gf is a forward
edge (because if sx is a backward edge in Gf , that would mean that the edge xs ∈ E
(with some flow) contradictin gthat s is a source). Hence the Augment procedure will
make f ′(e) = f(e) + b, and size(f ′) = f ′out(s) = f out(s) + b = size(f) + b.

Next, we show that the algorithm always terminate. By the previous lemma we know
that in each iteration the flow increases, all we need to show is that the maximum flow
is bounded.

Lemma 7. The Ford-Fulkerson Algorithm terminates in at most Cs = c([{s}, {s}])

Proof. By Lemma 2 any flow in G is of size at most Cs. We showed in the previous two
lemmas that in each iteration the flow always increases by least an integer b ≥ 1, hence
there can be at most Cs iterations.

Finally, we prove the runtime of the algorithm.

Lemma 8. The Ford-Fulkerson Algorithm can be implemented in O(mCs) time.

Proof. Since any Gf can have at most 2m edges we can find a s − t path in a Gf in
time at most O(n+m) = O(m) time using a BFS or DFS from s. Besides the constant

14



time operations AUGMENT(G, f) takes time O(n) = O(m) by visiting each edge of P
and making an increment or decrement operation. We showed that there are at most Cs

iterations, hence this implementation takes O(mCs) time. Here we made an assumption
that every vertex except s in G has at least one incoming edge, hence m ≥ n/2.

3.2 Optimality of Ford-Fulkerson Algorithm: The Max-Flow-
Min-Cut Theorem

We saw in the proof of Lemma 2 that for any flow f and any s− t cut [A,A] we have

size(f) = f out(A)− f in(A) (1)

Furthermore, since [A,A] is a cut we know that edges into A are precisely the edges out
of A and edges outgoing from A are precisely the edges incoming to A and similarly flow
into A is precisely flow out of A. Hence we can equivalently state (1) as: for any flow f
and any s− t cut [A,A] we have

size(f) = f in(A)− f out(A) (2)

Aas a corollary from (1) and (2), the assumption that s is a source (deg−(s) = 0) and t
is a sink (deg+(t) = 0, and considering the cut [{s}, V \ {s}] and the cut [V \ {t}, {t}]
we get that

size(f) = f out(s) = f in(t) (3)

Theorem 9. If f is a flow such that there is no s− t path in Gf , then there is a s− t
cut in [A∗, A∗] in G such that size(f) = c([A∗, A∗]).

Proof. We actually construct such a cut. Let A∗ be the set of vertices that are reachable
from s in Gf (so A∗ is the set of vertices not reachable from s i.e. there is no s− x path
in Gf for any x ∈ A∗).

1. First, we show that [A∗, A∗] is a s− t cut. since s is reachable form itself, s ∈ A∗,
and by the hypothesis there is no s− t path in Gf t ∈ A∗. Hence [A∗, A∗] is a s− t
cut.

2. Second, we show that size(f) = c([A∗, A∗]).

3. To see this we show that for any edge e = xy, where x ∈ A∗ and y ∈ A∗, fe = ce.

4. Actually, if fe < ce, then by construction of Gf , there will be a forward edge
xy ∈ Gf , such that the residual capacity of xy is fe − ce > 0. But then y should
be in A∗ as there is an s− y path in Gf via x.
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5. Similarly, for any edge e = uv, with u ∈ A∗ and v ∈ A∗, we have fe = 0.

6. Again, if fe > 0, then by construction in the residual graph there will be a reverse
edge vu with residual capacity equal to fe > 0. And we get a s − u path in Gf ,
contradicting the assumption that u ∈ Ā∗.

7. Hence, all edges outgoing form A∗ are completely saturated (no capacity left) and
all edges incoming to A∗ are completely unused.

8. Now using equation (1) we have

size(f) = f out(A∗)− f in(A∗) =
∑

e outgoing from A∗

fe −
∑

e incoming to A∗

fe

=
∑

e outgoing from A∗

ce −
∑

e incoming to A∗

0

=
∑

e outgoing from A∗

ce − 0

= c([A∗, A∗])

Theorem 10. If f is a flow with a corresponding cut [A∗, A∗] such that size(f) =
c([A∗, A∗]), then f is a maximum flow and [A∗, A∗] is a minimum cut.

Proof. We get this as an immediate corollary to Lemma 2. Because if there is flow
of larger size than f , then that size of that flow is larger than the cut c([A∗, A∗]) a
contradiction to Lemma 2. Similarly if there is a cut of smaller capacity than [A∗, A∗],
then that cut also contradicts Lemma 2.

Theorem 11. The Ford-Fulkerson algorithm returns a maximum flow.

Proof. Since the Ford-Fulkerson algorithm returns a flow f such that Gf has no s − t
path. By Theorem 9 there is a cut with capacity equal to size(f). Hence by Theorem
10 f is optimal.

Lemma 12. Given a maximum flow f in a network G, we can compute a minimum
s− t cut in G in time O(m).

Proof. This minimum cut is given as a bonus. Just run a DFS or BFS in Gf to find the
set of vertices reachable from s. Together with it’s complement by the above theorem
this is a min-cut. Gf can be computed in O(n +m) = O(m), as we just have to make
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(at most) 2 edges for each edge in G. Now since Gf has at most 2m edges, a BFS in Gf

takes at most O(n+m) = O(m) time (of course if a max-flow f is given).

4 Edmonds-Karp Algorithm

4.1 Ford-Fulkerson Algorithm - Slow Example

Recall the upper bound on the running time of O(mCs) the Ford-Fulkerson algorithm,
where Cs is the capacity of the cut [{s}, {s}]. Note that any cut is only an upper bound
size of the maximum flow, in case when Cs is much greater than size of the maximum
flow, a tighter upper bound is given by O(m · size(f)), when f is a maximum flow. This
can be proved using exactly the same argument as above.

Clearly, f can be arbitrarily large (e.g. 2n or even super exponential in the size of input),
hence this algorithm can be arbitrarily bad. The question is that this is only an upper
bound, is it ever achieved meaning are there instances where this bound is actually tight.
We give such an instance, where this indeed happens.

Consider the example in Figure 14 with 4 vertices and 5 edges. 1M is one million. The
maximum flow clearly is of size 2M . A few iterations of one possible execution are shown
in Figure 15.

s
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b

t

1M
1M

1M1M

1

(a) Given network

s

a

b

t

1M
1M

1M1M

1M

1M

1M

1M

1

(b) Maximum flow of size 2m

Figure 14: Example network on which Ford-Fulkerson may run too slow
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Figure 15: Few Iterations of Ford-Fulkerson on example in Figure 14

On this example the Ford-Fulkerson algorithm could potentially take 2M iterations, as
in each step it augments 1 unit of flow to the existing flow. Fortunately, Ford-Fulkerson
algorithm doesn’t restrict the choice of augmenting path. We can choose the augmenting
path wisely to fix the above problem.

4.2 Augmenting flow via shortest paths

The only fix needed in the Ford-Fulkerson algorithm is to always choose an augmenting
path that is of shortest length, i.e. the hop length (number of edges on the path) is as
small as possible. This is the Edmonds-Karp Algorithm.

Note that an augmenting path in a residual graph is found while ignoring the weights
(capacities). But we don’t have to ignore the number of edges. This essentially amounts
to using BFS to find a s− t path in the augmenting graph rather than DFS.

Correctness of the Edmond-Karp algorithm follows immediately from the above proof,
as that works for any augmenting path. Before analyzing its running time we run this
algorithm, on the pathological example from Figure 14, as shown in Figure 16.
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Figure 16: Running Edmond-Karps efficiently on example network in Figure 14

In any augmenting path algorithm, each augmentation saturates at least one edge on
the augmenting path, which actually makes that edge unavailable for the next iteration
(possibly many), at least in that direction. The key in this analysis is to realize that
an edge is not saturated too many times. This was the fundamental problem in the
pathological example as in Figure 15 the middle edge (a, b) was saturated too many
times.

4.3 Running Time of the Edmond Karp Algorithm

We need the following crucial lemma for proving a bound on the number of times an
edge is saturated.

Lemma 13. After each iteration of the Edmonds-Karp algorithm, the dGf
(s, v) (distance

(hop-length) in Gf from s to v) does not decrease for all vertices v. Same is true for
dGf

(v, t) and hence dGf
(s, t).

Proof. This is a straight-froward observation, as when an edge (x, y) is saturated, in the
residual network we remove the edge (x, y) (because its residual capacity is 0 (the edge
(y, x) is there though. Let f be the flow such that the edge (x, y) is saturated in Gf .
Let f ′ be the resulting flow. We know that dGf

(s, y) is greater than dGf
(s, x), by the

sup-path optimality. i.e. if there was a shorter path from s to y, then we will use that
shorter path to go to t, since we chose a shortest path from s to t. Now in Gf ′ , since the
edge (x, y) is not there, there cannot be a shorter path from s to y (a backward edge
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can never decrease a distance, as it is from a vertex farther away from s (namely y) to
a vertex closer to s (namely x).

In other words note that distances from s to v are originally defined in G = Gf=0. All
other edges added in subsequent residual networks are from vertices farther from s to
vertices closer to s (as we only introduce reverse edges along a shortest path).

Using this we show when can the algorithm reuse an edge that is once saturated.

Lemma 14. When an edge e = (x, y) is saturated once, it cannot be reused until dGf
(s, t)

strictly increases.

Proof. Suppose when the edge e = (x, y) is saturated via the path P = s, . . . , x, y, . . . , t.
Since P is a shortest path, the length of P , l(P ) = d(s, t). Let us denote lengths of the
subpath of P from s to x by d1 and length of the subpath of P from y to t by d2. In
other words d(s, t) = l(P ) = d1 +1+ d2. Note that this also gives us that d(s, y) at this
stage is d1 + 1.

Suppose the edge (y, x) is used at some point while working with Gf ′ (since the edge
(x, y) doesn’t exist any more, for (x, y) to be used again, (y, x) must be used before it).
By the previous lemma dGf ′

(s, y) ≥ d1 +1, and dGf ′
(x, t) ≥ d2 +1. If a path in Gf ′ uses

(y, x), since it is a shortest path, then we must have dGf ′
(s, t) ≥ d1 + 1 + 1 + d2 + 1 ≥

d1 + d2 + 3 ≥ l(P ) + 2.

Solid black line is P , when (xy) is first saturated
Red dashed lines is the path when edge (yx) is used the next time

s t

x

y

d1

d2

≥ d1 + 1

≥ d2 + 1

Figure 17: An edge can only be saturated a limited number of times by Edmond-Karp
Algorithm

So if the algorithm is going to use the edge (y, x), then distance from s to t must have
increased.

Theorem 15. The Edmonds-Karp algorithm takes O(nm2) time.
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Proof. Since distance from s to t can only increase O(n) times (maximum path length is
n− 1 ). So for a fixed value of distance d(s, t), a given edge (x, y) can be saturated only
once. After (x, y) is saturated once, If the distance does not increase, then the algorithm
can saturate other edges but not (x, y). Hence for this fixed value of distance there can
be at most O(m) iterations, as in every iteration some edge must be saturated.

After which the distance must increase, and for this second fixed value again there could
be O(m) iterations after which there must be an increase in distance.

Since the total number of different values for d(s, t) is O(n), in total there could be
O(nm) iterations. Recall that each iteration takes O(n +m) = O(m) (BFS), the total
running time of this algorithm is bounded above by O(nm2).

One point to note is that this could potentially be O(n5) for very dense graphs. But
at least it is polynomial in the size of the input. The upper bound on runtime does
not directly depend on the values of the capacities (and hence in the size of the flow),
but different values of capacities will effect the running time. To appreciate this point
suppose all capacities are 0 in this case there will be no iterations. Similarly if the all
capacities are the same, then a given path will saturate many edges at once, hence there
will be fewer iterations.

5 Other Algorithms for Maximum Flow

Some algorithms are directly based on the Ford-Fulkerson algorithm (like this Edmonds-
Karp algorithm).

5.1 The Scaling Algorithm

You are particularly encouraged to read about the scaling algorithm. This is a very
useful trick. The state of the art algorithm for Max-Flow algorithm is O(nm).

5.2 The Push-Relabel Algorithm

There are many better algorithms. You are encouraged to read about them, especially,
the push-relabel algorithm in your textbook.

6 Variants of Maximum Flow Problem

You should read on the following and know them on your own.
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6.1 Multiple Sources and Sinks

What if there are multiple sources and/or sinks.? This is dealt with very easily by
introducing a dummy source (and/or a dummy sink) node. This dummy source is
connected to each original source si by an edge with capacity equal to c([{si}, ¯{si}]).
If it is not clear why this should be the capacity of this edge, think about it until it is
clear.

6.2 Non-Integral Capacities

What if capacities are not integral? Then, the FF algorithm could be arbitrarily slow.
Rational numbers can be handled by multiplying all numbers with their LCM but real
numbers are trouble. We need to use a non-augmenting paths based algorithm.

6.3 The circulation problem

6.4 Min Cost Flow

7 Applications of Network Flows

The various variants of maximum flow, in particular the circulation problem. There are
a lot of applications of the maximum flow problem and its variants. Please go through
the book chapter and read about the following applications
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7.1 Bipartite Matching

7.2 Image Segmentation

7.3 Survey Design

7.4 Bipartite Matching

7.5 Edge Disjoint Path

7.6 Room Scheduling

7.7 Project Selection

7.8 Baseball Elimination

7.9 Airline Scheduling

7.10 Data Mining

7.11 Coin changing problem for Greedy Algorithms

– Can be added to Problem set or HW

7.12 Solving problem by reduction to network flows
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Figure 7.6 The max-flow algorithm applied to the network of Figure 7.4. At each iteration,
the current flow is shown on the left and the residual network on the right. The paths chosen
are shown in bold.
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Figure 7.6 Continued
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Figure 13: Example Run of Ford-Fulkerson Algorithm on the network in Figure 12
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