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1 Introduction

Many of the problems that we deal with in computing often involve solving problems
of a smaller size before we are able to arrive at the solution. Methods to solve such
problems often involve some form of recursion or iteration to arrive at the final result.
A form of algorithmic design that we will look in this series of notes is called Dynamic
Programming, which involves two key components, the substructure of the problem,
and the process of memoization.

1.1 Recursive Computational of Fibonacci Sequence

We once again visit the Fibonacci sequence of numbers, which is a sequence of numbers
where the nth Fibonacci number, Fn, is the sum of the (n − 1)th Fibonacci number,
Fn−1, and the (n − 2)th Fibonacci number, Fn−2, provided n > 2. For n = 0 we have
F0 = 0, and for n = 1, we have F1 = 1. Concisely, we have:

Fn =


0 if n = 0

1 if n = 1

Fn−1 + Fn−2 if n > 2

.

Generally, a naive method of computationally determining Fn involves recursion, as in
the pseudo-code below:

Algorithm 1 : Recursive Fibonacci Number Computation

function fib1(n)
if n = 0 then

return 0
else if n = 1 then

return 1
else

return fib1(n− 1) + fib1(n− 2)

As is evident from the pseudo-code, for values of n ≥ 2, the function is called for n− 1
and n− 2, and the results added. As we saw earlier, runtime such an algorithm is often
expressed as a recurrence relation. In this case, the recurrence relation for T (n), the
time taken by the algorithm on input n is given by

Tn =


1 if n = 0

2 if n = 1

Tn−1 + Tn−2 + c if n > 2

,
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where c is a constant representing the time taken to add two integers. By the definition
of Fn, we have T (n) > Fn. We can get a lower bound on Fn as: Fn ≥ 2n/2 for n ≥ 10,
proved by induction.

Proof. The base case, when n = 10, is trivial, since F10 = 57 ≥ 210/2 = 25 = 32.
Assuming this to be true for all k ≤ n− 1, we will show that Fn ≥ 2n/2. We know that
Fn = Fn−1 + Fn−1, and since we assumed that the inequality holds for every k ≤ n− 1,
it holds also for n − 1 and n − 2. Hence our inequality becomes the following which
completes our proof.

Fn = Fn−1 + Fn−2

≥ 2
n−1/2 + 2

n−2/2

≥ 2 · 2n−2
2

= 2
n
2
−1+1 = 2

n
2 .

Given that we now know that Fn ≥ 2n/2 and T (n) > Fn we can now easily say that T (n) =
Ω(2n/2). As is evident from this relation, the recursive method gives us a time bound
greater that exponential for computing a Fibonacci number, which is quite unreasonable.
The next section looks into how might we go about reducing this time duration to a
computationally feasible time.

1.2 Memoization

We saw that the recursive method for calculating a Fibonacci number has a time bound
greater than exponential. Key insights may be gained if we were to look into the recursion
tree for a recursive execution, for say n = 6
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Figure 1: A recursion tree for execution of Algorithm 1 on input n = 6

From the figure, we can see that there are a lot of repeated calls i.e. calls to the recursive
function with the same value. F (4) is repeated twice, F (3) 3 times, F (2) 4 times and
so on. It stands to reason that if we were to avoid such calls, we could significantly
reduce the amount of computational steps required for our final problem. These calls to
a reduced input sizes are known as subproblems, and by computing these subproblems
once and storing its results for reuse, we are doing what is known as memoization.

1.2.1 Recursive Fibonacci with Memoization

We now present an updated version of Algorithm 1, which utilizes the concept of mem-
oization to compute our final result. It is given as follows:
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Algorithm 2 : Recursive Fibonacci Number Computation with Memoization

for i = 1 to n do ▷ Initially F [i]’s are unknown
F [i]←∞

function fib2(n)
if n = 0 then

F [0]← 0
return 0

else if n = 1 then
F [1]← 1
return 1

else
if F [n− 1] ̸=∞ then

temp1← F [n− 1]
else

temp1← fib2(n− 1)
F [n− 1]← temp1

if F [n− 2] ̸=∞ then
temp2← F [n− 2]

else
temp2← fib2(n− 2)
F [n− 2]← temp2

return temp1 + temp2

We analyze this function’s runtime by counting the number of recursive calls. We can
see that a recursive call is made only when F [i] =∞ and in each call one entry in F is
filled. In total, there would be n calls to this function and in a given execution, there
may be some further recursive calls and a constant number of comparisons, additions
and array operations. Hence, the total time taken for an input of size n is O(n), which
is substantially better than our first attempt.

1.3 The Bottom Up Approach

The previous problem showcased a dynamic programming approach which utilized re-
cursion to solve subproblems, which were used to arrive at the final solution. Another
approach in dynamic programming instead goes from bottom to up, computing the sub-
problems from the base case to the final solution. Again, we look into the nth Fibonacci
number problem, and present an iterative method which utilizes memoization.
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Algorithm 3 : Iterative Fibonacci Number Computation with Bottom-up Approach

function fib3(n)
for i = 1 to n do ▷ Initially F [i]’s are unknown

F [i]←∞
F [0]← 0
F [1]← 1
for i = 2 to n do

F [i]← F [i− 1] + F [i− 2]

return F [n]

This algorithm, again takes O(n) time, and has lower overhead than the recursive
method. All three algorithms discussed so far have their correctness following from
the Fibonacci sequence definition.

2 Weighted Independent Set in Path Graphs

An independent set of a graph G is defined as a subset S ⊂ V , where V is the set of
vertices in G, such that no two vertices in S are adjacent to each other. As an example,
consider the graph below

Graph G = (V,E) An independent set of size 4 An independent set of size 5

Figure 2: An example graph and two independents sets in it.

2.1 The maximum independent set problem

Problem (The Max Independent Set Problem). Given a graph G find an independent
set in G of maximum cardinality.

Since every single vertex makes an independent set, only finding large independent set
is an interesting problem. With a small graph, finding a max independent set is quite
easy, but is difficult for large graphs with complex connections. We will discuss this
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problem and other versions of it in quite detail when we study complexity theory. We
can iterate over all 2n subsets of vertices and find a largest independent set in a graph on
n vertices. We know that other than some minor tweaks this exponential time algorithm
is essentially the best known algorithm for the maximum independent set problem. The
problem is np-hard and there is no known polynomial time algorithm for this problem.

2.2 The maximum weight independent set problem

The problem become interested when we consider node-weighted path graphs. Formally,
given a graph G = (V,E,w) where V is the set of vertices, E the set of edges and
w : V → R assign real weights to each vertex of G. For an example, consider the graphs
below.

Given a node-weighted graph, weight of a subset of vertices is defined to be the sum of
weights of vertices in the subset. Combining our definition of the independent set and
the weighted graph, we now describe a weighted independent set, which is simply an
independent set of any weighted graph.
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A node-weighted graph G with weights shown inside vertices

An independent set in G of cardinality 4 and weight 20 An independent set in G of cardinality 3 and weight 37

An independent set in G of cardinality 3 and weight 37 An independent set in G of cardinality 4 and weight 37

Figure 3: A node weighted graph and weighted independent sets in it.

2.3 Maximum weight independent set in path graphs

Since the weighted independent set can be defined for any weighted graph, it can also
be defined for a weighted path graph, which is simply a special case of the former. We
move on to a special case of this problem, where the input graphs are restricted to be
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path graphs. Note that given the structure of the input, it is very easy to see that in
any path graph a max independent set is just a collection of alternating vertices in the
paths order. In particular, we would be interested in finding out the maximal weighted
independent set of a path graph, which we describe in the following problem statement:

Problem. Given a path graph with positive integer weights on vertices, find an indepen-
dent set of largest weight.

We first try to solve this problem in a brute force manner, which in this case, simply
involves making all possible subsets, and find the one with the largest weight.

2.3.1 Greedy Algorithm for maximum WIS in path graphs

But as with all brute force solutions, we would like to improve on our runtime, so we try
out a greedy approach, due to the nature of the problem. We simply do the following;
take the heaviest node in the graph, add it to our set, remove it and its neighbors, and
repeat with the resulting vertices, till there are no vertices left. This approach, while
well meaning, has the possibility of removing vertices that could have contributed more
to the total.
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786961

786961

786961

A node-weighted path graph P

An independent set of weight 18 computed by the Greedy Algorithm

An independent set of weight 19 (larger than the output of the greedy algorithm)

Figure 4: A node weighted path graph and weighted independent sets in it.

2.3.2 Divide and Conquer Strategies for maximum WIS in path graphs

A divide-and-conquer approach could also be considered, by dividing the graph into two
subgraphs, computing the maximal weighted independent sets for both subgraphs, and
then combining the two.

Note that combining the two may not result in a feasible solution, due to the possibility of
conflicts occurring at the ends of the two subgraphs. For instance, in a graph consisting
of {4,5,5,1}, dividing equally would give {4,5} and {5,1}. To avoid conflict, assuming
left precedence, we would have to select 1 at the right side, whereas a better solution
would be to keep 5 at the right and select 4 at the left.

Another example of this failed strategy is given in the following figure.
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879642

879642

879642

A node-weighted path graph P

An independent set in the left half An independent set in the right half

A maximum independent set, not obtained by “combining” the right and left independent sets

Figure 5: A node weighted path graph and weighted independent sets in it.

Another divide and conquer algorithm could be to put all odd vertices into S1 and all
even vertices into S2. These both sets would be independent, and by taking the one that
is heavier, we should have a maximal weighted independent set. But this would also not
work, consider that the graph is as such, {1,2,10,2,3,10}. Dividing into even and odd
sets would give us {1,10,3} and {2,2,10}, with either set being selected. A better set
would have been {1,10,10}.
Another example of this failed strategy is given in the following figure.
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736239

736239

736239

A node-weighted path graph P

Odd position vertices make an indepenent set of weight 14 while even position vertices make one of weight 16

A maximum independent set, of weight 22 larger than either of the odd/even position vertices

Figure 6: A node weighted path graph and weighted independent sets in it.

Let us now consider what the optimal solution would look like. We first order our
vertices, and give them a number, v1, . . . , vn. We denote with Gk the path graph made
up by v1, v2, . . . , vk (the first k vertices in the path).

︸ ︷︷ ︸
Pn

. . . vnv1 v2 . . .v3 vn−1vk

Pk︷ ︸︸ ︷

Figure 7: A node weighted path graph and weighted independent sets in it.

2.3.3 Dynamic Programming Formulation

We now define our notation for the optimal solution and value of the optimal solution
for Gk. The optimal solution for Gk is Opt−Soln(k), which gives the set of vertices from
Gk that gives the maximum weighted independent set for Gk, and the value is Opt(k),
which is simply the sum of values of the vertices in Opt− Soln(k). Our actual input is
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G with n vertices, and hence we want to compute Opt− Soln(n) and Opt(n). We now
discuss the structure of the optimal solution without knowing how to compute it.

We take inspiration from our earlier divide-and-conquer attempts, that we can compose
the solution of the larger problem by using the solutions for a smaller subproblem.
We can see from the structure of the problem that there are two possibilities for the
vn vertex and its value. Either it is included in the optimal solution, meaning that
vn ∈ Opt − Soln(n), or it is not. In the latter case, since vn /∈ Opt − Soln(n) and
Opt − Soln(n) is an independent set in G, Opt − Soln(n) is an independent set in
Gn−1, Furthermore, Opt − Soln(n) is the maximum weight independent set in Gn−1.
This is because if there was a bigger weight ind. set in Gn−1, that set would also
be independent in Gn, but of bigger weight, which would be a contradiction of our
assumption of Opt− Soln(n) being the optimal solution.

In the other similar but slightly more complicated case when vn ∈ Opt − Soln(n), by
the property of the independent set, vn−1 cannot be in Opt−Soln(n), because having it
would make our set non-independent. Mimicking our argument for the previous case, we
can say that if vn ∈ Opt− Soln(n), then Opt− Soln(n) \ {vn} is an independent set in
Gn−2. We also can say that Opt− Soln(n) \ {vn} is the optimal solution for Gn−2 using
the previous case’s argument, since having a ind. set in Gn−2 which has larger weight
than Opt − Soln(n) \ {vn}, would make it an independent set in Gn, but with higher
weight, since V alue(Opt−Soln(n)) = V alue(Opt−Soln(n)\{vn})+w(vn) (all weights
are positive), which would contradict our assumption. For example if Opt(n) = 100 and
w(vn) = 10, Suppose there is an independent set of total weight 95 in Gn−2, then since
this independent set is also an independent set in Gn, this combined with vn gives us an
IS of weight 95 + 10 = 105, which contradicts the fact that Opt(n) = 100.

With these two cases covered, we can now define the recurrence relation for our problem,
which is:

Opt(n) = max

{
wn +Opt(n− 2) if vn ∈ Opt− Soln(n)

Opt(n− 1) if vn /∈ Opt− Soln(n)

In other words we get that the max weight independent set in Gn must be either

1. a max weight independent set in Gn−1

2. vn plus a max weight independent set in Gn−2.

We actually get something stronger if we know whether vn is part of MIS of Gn, then
we recursively solve the problem in Gn−2, otherwise we recursively solve the problem in
Gn−1 and be done. The problem is that we do not know which is the correct case, so
we simply explore both possibilities, and take the better one, which should be clear. In
general for any k ≥ 3 we get that:
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Opt(k) = max

{
wk +Opt(k − 2) if vn ∈ Opt− Soln(k)

Opt(k − 1) if vk /∈ Opt− Soln(k)

We know just need to come up with the base cases for this recursion scheme. It is
very easy to see that Opt(1) = w(v1), as a one vertex path has the one vertex as an
independent set and it is the maximum (only) independent set since all weights are
positive. Similarly it is clear that maximum weight IS in a two vertex path is the vertex
with the larger weight, (both combined is not an IS, as there is an edge between the
two vertices). So Opt(2) = max{w(v1), w(v2)}. Now this readily gives us a recursive
algorithm as follows (we only focus on finding the vale of optimal solution at this moment,
i.e. given Pn, we want to find Opt(n) at the moment).

Algorithm 4 : Recursive Max WIS in Path Graph

function Rec-wis(k)
if k = 1 then

return w(v1)
else if k = 2 then

return max{w(v1), w(v2)}
else

return max{Rec-wis(k − 1), w(vk)+Rec-wis(k − 2)}

This is clearly a recursive formulation of the brute force method, and will give an expo-
nential 2n runtime. But we can explore this idea further to improve upon it. Note that
this a top down method, which typically gives us exponential time due to the number of
repeated calls to smaller subproblems in separate subtrees. An example for a 6 vertex
path graph is given in Figure 8
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Figure 8: Recursion tree for computing a 6-vertex path graph’s maximum weight inde-
pendent set

We have discussed previously that the dynamic programming paradigm allows us that,
once the solution to the problem has been expressed in terms of solutions to some
subproblems, and the repetition of subproblems has also been identified, we can use
either memoization, or a bottom up approach. We use an array of size n to hold the
value of the maximum weight independent for Gi at the ith index. The following code
shows an implementation that utilizes memoization to compute the MWIS solution:
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Algorithm 5 : Recursive WIS with Memoization

for i = 1 to n do ▷ Initially A[i]’s are unknown or NULL
A[i]←∞

function rec-wis-memo(k)
if k = 1 then

A[1]← w(v1)
return A[1]

else if k = 2 then
A[2]← max{w(v1), w(v2)}
return A[2]

else
if A[k − 1] ̸=∞ then

temp1← A[k − 1]
else

temp1← rec-wis-memo(k − 1)
A[k − 1]← temp1

if A[k − 2] ̸=∞ then
temp2← A[k − 2]

else
temp2← rec-wis-memo(k − 2)
A[k − 2]← temp2

return max{temp1, w(vk) + temp2

This function’s runtime can be analyzed from the number of recursive calls. We can
see that a recursive call is made only when A[i] = ∞ and in each call to this function
one entry in the A array gets filled. So in total there are n calls to this function and
in a given execution of this function, there may be some further recursive calls and a
constant number of comparisons and array operations, hence total time is O(n) much
better than the first recursive function.
The next function is a bottom up approach on the problem, and is as follows:
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Algorithm 6 : Max WIS in Path Graph with Bottom-up Approach

function wis-bott-up(n)
for i = 1 to n do ▷ Initially A[i]’s are unknown

A[i]←∞
A[1]← w(v1)
A[2]← max{w(v1), w(v2)}
for i = 3 to n do

A[i]← max{A[i− 1], w(vi) + A[i− 2]}
return A[n]

This one clearly takes O(n) time and has much less overload.

2.3.4 Reconstruction Algorithm: Finding the Optimal Solution

Given the array filling algorithm above, which only computes the value of the max weight
IS in path graph, (which only returns some number e.g. 110). It should be clear that we
can augment the array A to not only find the value but also the solution. It would need
something like a linked list augmented to each A[i] containing the Max WIS in each Gi

(what we denoted by Opt− Soln(i)). Correctness of this approach can be easily proved
by the above recurrences, but this solution is very wasteful, it wastes a lot of space.
Instead what we do and is usually done in the dynamic programming paradigm, is to
back-track through the filled in array (the memo), to reconstruct the optimal solution.
Here is the main idea that we exploit; vk belongs to Max WIS of Gi if and only if
(w(vi) + Opt(k − 2)) ≥ Opt(k − 1), i.e. which branch did we take while filling in the
array. Its proof follows from the above recurrence relation. Note that when there is a tie
than we can go either way (this corresponds to multiple optimal solutions). Following
is the reconstruction algorithm
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Algorithm 7 : Backtracking to find a Max WIS in Pn

function Find-WIS(n)
S ← ∅
i = n
while i ≥ 1 do

if w(vi) + A[i− 2] ≥ A[i− 1] then
S ← S ∪ {vi}
i← i− 1

else
i← i− 1

return S
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3 Weighted Interval Scheduling

One problem that comes up in many forms is resource management and task completion.
Many jobs in the current world involve allocation of resources to particular tasks, which
have a particular time to start at and have a duration of time before completion. These
tasks also have certain awards associated with them, which makes it difficult to determine
which tasks are to be assigned resources. As an example, consider a single server, which
is capable of processing tasks given to it by users. There are a number of requests made
by the users for processing time on the server, and each task needs to start at a particular
time specific to the task, and has a duration for which the task will run. Each task also
has a value which measures the benefit of completing that task.
We now define the problem in more formal terms.

Problem. There are n requests, each request ri has s(i) and f(i), which are the start
and finish times respectively. Implicitly, we have d(i) = f(i) − s(i), which defines the
duration of the ith task. In addition, we have v(i), the value of the ith task. A request
ri is compatible with rj if there is no time overlap i.e. [s(i) < f(i) < s(j) < f(j)] or
[s(j) < f(j) < s(i) < f(i)]. Our goal is to select a subset of compatible requests that
have the largest total value, the sum of all the intervals in the subset.

Recall that the old interval scheduling problem, with a single resource, is simply a special
case of this problem, where all intervals have value v(i) = 1. Hence, greedy strategies
that did not work with that problem will not work here, such as taking the earliest start
time, latest finish time, shortest interval, largest interval and least conflicting requests.
Also, the greedy strategy that worked for the unweighed interval scheduling problem,
which took the earliest finish time, will not work here, since it is possible to have requests
which finish early, but do not have a high value. This is highlighted in Figure 9.

1

2

3

1 2 3 4 5 6

v(1) = 1

v(2) = 10

v(3)= 1

Figure 9: A counter-example for early finish time strategy in weighted interval scheduling

With the intervals given in Figure 9, the earliest finish time strategy would first pick
r1, which conflicts with r2, but is compatible with r3, which would be selected next.
The total value of this subset is 2, while the optimal solution clearly is to select only r2,

19



which gives a total value of 10.
It can be clearly seen that any natural greedy strategy that one might employ would
not work, since a counter example can be shown for it.

Lets suppose that requests are sorted by their finishing time i.e. f(1) ≤ f(2) ≤ . . . ≤
f(n). For request j (with starting time s(j) and f(j)), it is the jth request in the sorted
order), we define p(j) to be the largest index i < j, such that ri is compatible with rj,
i.e. for rj, p(j) is the first interval that ends before rj begins (going from right to left).
An example is shown in Figure 10

Index

1

2

3

4

5

6

v(1) = 2

v(2) = 4

v(3) = 4

v(4) = 2

v(5) = 2

v(6) = 1

p(1) = 0

p(2) = 0

p(3) = 1

p(4) = 0

p(5) = 3

p(6) = 3

Figure 10: Intervals sorted by finishing time and with p(i) assigned

Lets assume that we are given an optimal solution O of a weighted interval scheduling
instance. We currently have no idea how to compute O or another equal value solu-
tion, but we can say for sure that either rn ∈ O or rn /∈ O. Furthermore, we know
for sure that if rn ∈ O, then all intervals at the indices between p(n) and n cannot be
part of O, since by definition of p(n), p(n) + 1, p(n) + 2, . . . , n − 1 end after s(n), so
they are not compatible with rn. So if rn ∈ O, then we can surely exclude all requests
p(n) + 1, p(n) + 2, . . . , n− 1 from consideration. Furthermore, this O in addition to rn
must make up an optimal solution to the subproblem r1, r2, . . . , rp(n). Because suppose
optimal solution to {r1, r2, . . . , rp(n)} is O− and the total value of O ∩ {r1, r2, . . . , rp(n)}
has value less than the value of O−, then we can take O− ∪ rn which is strictly greater
than O and it is a feasible solution as all requests in {r1, r2, . . . , rp(n)} are compatible
with rn. On the other hand, if rn /∈ O, then the optimal solution to {r1, . . . , rn−1} is an
optimal solution to {r1, . . . , rn−1}.
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So we have described an optimal solution to the problem {r1, . . . , rn−1, rn} in terms
of the optimal solution to the subproblem {r1, . . . , rn−1} and the other subproblem
{r1, r2, . . . , rp(n)}, since one of these two possibilities must occur, we have :

OPT (r1, . . . , rn) = max{vn +OPT (r1, . . . , rp(n)), OPT (r1, . . . , rn−1)}

It is easy to see that OPT (r1, . . . , rj) = max{vj+OPT (r1, . . . , rp(j)), OPT (r1, . . . , rj−1)}.
We now have a recursive formulation of the optimization problem, and so we need a base
case, which is OPT (∅) = 0. The complete recurrence relation is given by:

OPT (r1, . . . , rj) =

{
max{vj +OPT (r1, . . . , rp(j)), OPT (r1, . . . , rj−1)} if j ≥ 1

0 if j = 1

We can decide whether rj is part of the optimal solution, based on whichever or not
vj + OPT (r1, . . . , rp(j)) ≥ OPT (r1, . . . , rj−1). If Yes, then rj is part of the solution, as
its value is more than if we didn’t include it and vice-versa. This gives us a complete
recursive algorithm, to find value of an optimal solution. We can also find an optimal
solution by noting down which side of the recursion tree we took. Here is the algorithm
to find the value:

Algorithm 8 : Recursive Weighted interval scheduling

sort requests by finishing time ▷ it takes O(n log n) for n requests
For each rj find p(j) ▷ with binary search this take O(n log n) time.
function Compute-OPT-Value(n)

if n = 0 then
return 0

else
temp1← vn+Compute-OPT-Value(p(n))
temp2←Compute-OPT-Value(n− 1)
if temp1 ≥ temp2 then

return temp1
else

return temp2

It’s correctness directly follows by induction, using the above argument. Its runtime is
exponential, due to its recursive nature. As an example, we take the set of intervals
defined in Figure 10, and show its recursion tree in Figure 11
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OPT (1)
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Figure 11: The tree of subproblems called by Compute-Opt on the problem instance of
Figure 10

Again, this runtime is easily reducible due to the fact that we are using values of sub-
problems to compute the final answer, and hence can use memoization to compute the
solution bottom-up, and hence reduce the runtime to linear. It is left as an exercise to
the reader to devise the pseudo-code for this.

4 Knapsack Problem

Many world problems involve the problem of allocating space to a set of items, which
have a certain value attached to them, as well as an amount of space they occupy. For
example, logistical problems involve the transportation of freight in tankers, trucks and
airplanes, which have a finite amount of space available, and the items in the freight have
certain monetary value attached to them, as well as weight and/or space requirements.
It is of considerable interest that the transporter maximize the profit they can earn,
while staying within the limits of the space available. Such problems are commonly
known as Knapsack problems, named so after the problem of a burglar having to fit
items into his/her knapsack to maximize the total benefit to the burglar. Before we
define the Knapsack problem in formal terms, we first look at a similar, but simpler
problem.
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Problem. Given a set U = {a1, a2, . . . , an} and a positive integer C, find a subset S ⊂ U
such that |S| ≤ C and

∑
ai∈S ai is as large as possible.

This problem is known as the subset sum problem, where we want to find a subset
of maximum sum, with a cardinality constraint. Many optimization problems can be
modeled as such, for example U could represent requests of the interval scheduling
problem, and a server is available for C units of time. We would like to select a subset
of requests so that the server can be utilized as much as possible, while staying within
the capacity constraints.
A more generalized version of this problem is as follows:

Problem. There is a set U ={a1, . . . , an} of n items, where each item has a weight
{w1, . . . , wn}, and a value {v1, . . . , vn}. Given a positive integer C, find a subset S ⊂ U ,
such that

∑
ai∈S wi ≤ C and

∑
ai∈S vi is as large as possible.

As is evident, the previous problem is a special case of this problem, where wi = vi = ai.
This problem allows us to model problems such as weighted interval scheduling, where
every interval has a duration and some value. We want to use a single server with upto
C units of time such that the total value of scheduled intervals is as large as possible.
And as discussed before, it allows us to also model the Knapsack Problem. As has been
evident from our previous discussions, greedy approaches to these problems are not suc-
cessful. Consider C = 100 and U = {51, 50, 50}; a greedy approach could be to take
the highest value item as long as the total does not go over capacity. This approach
would select {51} and stop, while clearly a better answer would be to take {50, 50}.
Now consider C = 100 and U = {1, 50, 50}; another greedy approach would be to take
the lowest weight items, but in this case, it would select {1, 50}, whereas a better option
was to take {50, 50}.

A key step in solving the problems we have seen so far has been to try to express
the problem in terms of a small number of subproblems, such that each subproblem can
be solved easily from smaller subproblems. For the generalized problem, we will denote
a problem instance in terms of three sets and an integer, which are U = {a1, . . . , an},
W = {w1, . . . , wn} and V = {v1, . . . , vn} and C, where U is the set of items, W is the
set of their respective weights, V the respective values and C is our available capacity
for the problem. We now define the optimal solution and its value.
Let OPT (i) and O(i) be the value of the optimal solution and the optimal solution (the
actual subset) respectively, of the (sub)problem U = {a1, . . . , ai}, W = {w1, . . . , wi} and
V = {v1, . . . , vi}. Clearly, our goal is to find OPT (n) and O(n). We know that either
an ∈ O(n) or an /∈ O(n). In the later case we must have that OPT (n) = OPT (n − 1)
and O(n) = O(n− 1). In the former case, we can not really consider OPT (n− 1) and
O(n− 1), we are cheating a little bit. Suppose we know that an ∈ O(n), then we have
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a little less capacity left to select remaining items from U = {a1, . . . , an−1}. Notice that
definition of OPT (n) and O(n) depends on n only (implicitly it depends on the sets
W , V and U (n elements in each)). But there is no mention of C, which is also part of
the input and is an important constraint for the solution. Suppose C was not there (or
unlimited), then we can clearly take all of U (or at least all element ai of U such that
vi ≥ 0, in case negative values are there). So we correct our definition as follows.

Let OPT (i, c) and O(i, c) be the value of the optimal solution and the optimal solution
(the actual subset) respectively, of the (sub)problem U = {a1, . . . , ai}, W = {w1, . . . , wi}
and V = {v1, . . . , vi} and capacity C. Our goal is to find OPT (n,C) (and O(n, c)). Now
we can completely define OPT (n,C) in each cases when an ∈ O(n,C) and an /∈ O(n,C).
In the latter case clearly, OPT (n,C) = OPT (n − 1, C) and O(n,C) = O(n − 1, C),
while in the former case, since an ∈ O(n,C), the remaining elements of O(n,C) are ele-
ments of U \ {an} = {a1, . . . , an−1 with weights W \ {wn} = {w1, . . . , wn−1} and values
V \ {vn} = {v1, . . . , vn−1}. But the total weight of elements in O(n,C) \ {an} must not
exceed C−wn. Hence in case an ∈ O(n,C), then OPT (n,C) = OPT (n−1, C−wn)+vn
and O(n,C) = O(n−1, C−wn)∪{an}. The recurrence relation we get now is as follows:

OPT (n,C) =

{
OPT (n− 1, C − wn) + vn if an ∈ O(n,C)

OPT (n− 1, C) if an /∈ O(n,C)

It is easy to write the base case, when there is only one element in U = {a1}, if w1 <
c, then OPT (1, c) = v1, else OPT (1, c) = 0 and O(1, c) = {a1} else O(1, c) = ∅
(respectively). This suggests that we solve many subproblems; we need to know the
value of the best solution using a subset of {a1, . . . , an−1} and capacity C − wn and for
the else part with capacity C. So we will solve even more subproblems, we will determine
the value of OPT (i, c) for each 1 ≤ i ≤ n and for each 1 ≤ c ≤ C. It is easy to see that if
we have solutions to all of these subproblems then it is trivial to determine that value of
OPT (n,C), namely, OPT (n,C) = max{OPT (n−1, C−wn)+vn, OPT (n−1, C)}, and
in general, OPT (i, c) = max{OPT (i−1, c−wi)+vi, OPT (i−1, c)}. The above recursive
formulation readily gives us a recursive algorithm, but if we visualize the recursion tree,
we can see a lot of redundancies. For example if w9 = 5, w10 = 5 and C = 100, then we
will have to solve OPT (8, 95) once for when in the branch when a10 is included and a9 is
not included and once in the branch where the a9 is included and a10 is not included in
the optimal solution. So as usual in the dynamic programming paradigm, we compute
each value only once using a bottom up iteration, and memoize it. Since our problem is
now two dimensional i.e. has two variables to consider as OPT (i, c), our memoization
will be in a 2-dimensional array. Following is the pseudocode
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Algorithm 9 : Bottom-uP iterative Computation ofOPT (i, c) using the above recursive
formulation

function Knapsack(n,C)
for i = 0 to n do ▷ Initially OPT [i][c]’s are unknown

for c = 0 to C do
OPT [i][c]← −∞

for c = 0 to C do
OPT [0][c]← 0 ▷ when i = 0 =⇒ U = ∅, then clearly OPT [0][.] = 0

for i = 0 to n do
OPT [i][0]← 0 ▷ when c = 0 =⇒ no capacity, then clearly OPT [.][0] = 0

for i = 1 to n do
for c = 0 to C do

if OPT [i− 1][c− wi] + vi ≥ OPT [i− 1][c] and c ≥ wi then
OPT [i][c]← OPT [i− 1][c− wi] + vi

else
OPT [i][c]← OPT [i− 1][c]}

return OPT [n][C]

0
0
0
0
0
0
0
0
0
0
0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

1

2

i− 1

i

cc− wi0 1 2 C

n

max

Figure 12: The matrix of optimal value of solution to the knapsack instance for all value
of i and c. OPT [i][c] is computed from the two cells with arrow to the cell OPT [i][c]

4.1 A sample run of the Knapsack problem

We now look at a sample problem to see how our proposed solution works. We take
the problem instance where U = {a1, a2, a3, a4, a5}, W = {1, 6, 5, 2, 8}, V = {3, 2, 8, 1, 5}
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and C = 15. We set up our solution space as in the initial part of the algorithm(before
we go beyond OPT [0][.] or OPT [.][0]) as in Figure 13
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Figure 13: The initial solution space

We begin by filling the row OPT [1][.], which corresponds to the set U = {a1} and its
respective derivative sets for W and V . Since this includes only one item, with weight 1,
we would take a1 when the capacity goes to w1, which is 1 for this problem. Subsequent
capacity increases would not matter, so all cells onwards OPT [1][1] would get the same
value. The resultant problem space is shown in Figure 14.
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Figure 14: After iteration for OPT [1][.]

Our second iteration now considers row OPT [2][.], which now has two objects in set
U = {a1, a2}. Recall that our condition to add ai to our solution requires that we have
enough capacity, which is clearly not possible until c ≥ w2, which is 6. So for OPT [2][1]
to OPT [2][5] we would put in the corresponding values in the previous row. When c ≥ 6,
we now consider whether to put a2 in our solution. At c = 6, putting in a2 would not
leave any more capacity, so we will have OPT [1][0]+v2 = 2 versus OPT [1][6] = 3. Since
the latter is greater, we would put that value in OPT [2][6]. For subsequent values, we
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now have capacity that can also support a1, so we take the sum of v2 and the previous
row’s corresponding value. The end of this iteration results in the state shown in Figure
15
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Figure 15: After iteration for OPT [2][.]

Our third iteration now considers row OPT [3][.], which has set U = {a1, a2, a3}. Again,
till we reach capacity for a3, we take the values of the previous row for the corresponding
columns. At c = 5, we now can consider whether to put a3 into or not. Our next best
choice is OPT [2][5], which equals 3. Since v3 = 8, we include a3, which leaves no space
for other items, hence OPT [3][5] = 8. From c = 6 to c = 10, we do not have space
for a2 if we include a3, but can consider a1, so we have either OPT [2][c − 5] + v3 = 11
or OPT [2][c] = 3or5(c = 7 onwards). At c = 11, if we include a3, we still have space
to consider a2, which makes our choice either OPT [2][6] + v3 = 11 or OPT [2][11] = 5.
Since the former case is higher, we include a3 in our answer, but a2 still did not make
the cut. When we move on to c ≥ 11, we now have space for all three items, which
makes our total 13. The state after this iteration is as in Figure 16
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Figure 16: After iteration for OPT [3][.]

For the last two iterations, we simply show the results after the iterations in Figure 17
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and 18, and leave it as an exercise for the reader to determine how the values changed.
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Figure 17: After iteration for OPT [4][.]
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Figure 18: After iteration for OPT [5][.]

At the end, we return the value at OPT [5][15], which is 16.

4.2 Backtracking to find the actual solution

We know that the value of the optimal solution is in OPT [n][C] the last cell of the
matrix, But this doesn’t give us the solution (O(n,C)). We can also maintain a solution
with each cell which would be a straightforward application of the above recurrence.
But now while filling a cell OPT [i][c] takes O(1) time, to write a set with each cell will
take O(n) time. But now while filling a cell OPT [i][c] takes O(1) time, to write a set
with each cell will take O(n) time, so total runtime will be blown up by a factor of O(n),
as well as a lot of wastage of space. O(n,C) can be computed easily by backtracking
for the cell OPT [n][C]. Recall the recurrence for the problem:

OPT (i, c) =

{
OPT (i− 1, c− wi) + vi if ai ∈ O(i, c)
OPT (i− 1, c) if ai /∈ O(i, c)
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From this we know that ai ∈ O(i, c) iff OPT [i − 1][c − wi] + vi ≥ OPT [i − 1][c]. For
instance an ∈ O(n,C) iff OPT [n − 1][C − wn] + wn ≥ OPT [n − 1][C], so we just
compare again OPT [n − 1][C − wn] + wn with OPT [n − 1][C] (both cells are already
computed) and if the former is big we conclude that an is part of the optimal solution
(O(n,C)), otherwise it is not. We use this observation to trace back the actual solution.
A pseudocode for general ai is given as follows

Algorithm 10 : Backtracking to find O(n, c) using the above recursive formulation

function Find-Set(i,c)
if i = 0 or c = 0 then

return ∅
else

if OPT [i− 1][c− wi] + vi ≥ OPT [i− 1][c] then
return ai ∪ Find-Set(i− 1,c− wi)

else
return Find-Set(i− 1,c)

We call this function Find− Set(n,C), it will return us the subset with optimal value.
Since this function calls itself each time with strictly smaller value of i, its runtime is
clearly O(n).

4.3 Runtime

Clearly when the table is filled in we know the value of the optimal solution from the
cell OPT [n][C] and we can find the solution by backtracking as mentioned above. A
given cell of the matrix is filled in O(1) from the two cells that are already filled in. So
the runtime is proportional to the size of the matrix, which is O(nC). Note that this
runtime is not in terms of the size of input. Here n is a parameter about the size of input
the number of elements in the set or the size of the three arrays. But C is actually the
value of an input (not it’s size). size of C is like O(logC) bits. So strictly speaking this
algorithm is not a polynomial time algorithm, and such algorithms are called pseudo
polynomial time algorithms.

5 Sequence Alignment

A key problem that occurs when analyzing strings is the problem of sequence alignment,
where strings are compared to each other to find sequences that are similar for a pair of
strings. This problem comes up not for electronic dictionaries and spell-checking tools,
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but also for molecular biologists, who are interested in the similarities between DNA se-
quences between two organisms. We will use this problem of finding similarities between
DNA sequences to illustrate the dynamic programming paradigm applied to sequence
alignment.

A DNA sequence is represented as a sequence of characters, whose alphabet is {A,C,G, T},
which stand as the molecules that are present in the sequence. A DNA sequence en-
codes information for the construction of proteins that the particular organism uses for
survival. Scientists use these sequences to determine the similarities between organisms
who may be related evolutionarily. Before we move further, we define the notion of
similarity as it applies to between two strings. Consider two strings X and Y , where X
consists of the sequence of symbols x1x2 . . . xm and Y consists of the sequence of symbols
y1y2 . . . yn. Consider the sets {1, 2, . . . ,m} and {1, 2, . . . , n} as representing the different
positions in the strings X and Y , and consider a matching in these sets. A matching
is a set of ordered pairs with the property that each item occurs in at most one pair.
We say that a matching M of these sets is an alignment if there are no “crossing” pairs
i.e. if (i, j), (i′, j′) ∈ M and i < i′, then j < j′. In essence, an alignment gives a way
of lining up two strings, by telling us which pairs of positions will be lined up with one
another. For example, for the strings {‘stop’,‘tops’}, the alignment {(2, 1), (3, 2), (4, 3)}
aligns the subsequence ‘top’ in both strings.

We will define similarity based on finding the optimal alignment between X and Y ,
as per the following criteria. Suppose M is a given alignment between X and Y . The
following conditions are considered:

� A parameter δ 0, which defines a gap penalty. For each position of X and Y that
is not matched in M i.e. a gap, incurs a cost of δ.

� Next, for each pair of letters p, q in our alphabet, there is a mismatch cost of αpq

for aligning p with q. Thus for each (i, j) ∈ M , the appropriate mismatch cost
of αxiyj for lining up xi with yj. We generally assume αpp = 0 for each letter p
i.e. there is no mismatch cost to line up a letter with a copy of itself. This is not
necessary.

� Finally, the cost of M is the sum of its gap and mismatch costs, and we seek an
alignment with minimal cost.

The process of finding such an alignment is known as sequence alignment. Generally,
the choice of δ and αpq affects which alignment is considered optimal, but in our case,
we will consider these parameters a given. with our numerical definition of similarity
between strings X and Y , we will now try to design our algorithm.
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In our previous approaches to problems using dynamic programing, we try first to define
how the optimal solution would look like. We shall do the same for this problem. Lets
begin by considering the last positions for both strings m and n in the optimal alignment
M . There are two cases; either (m,n) ∈ M or (m,n) /∈ M i.e. either the last symbols
match to each other, or they don’t. This by itself is not sufficient to give us a solution,
so we augment it with the following lemma.

Lemma 1. Let M be any alignment of X and Y. If (m,n) /∈ M , then either the mth

position in X or the nth position in Y is not matched in M

Proof. We prove by contradiction. Consider that (m,n) /∈ M , and there are numbers
i < m and j < n such that (m, j) ∈ M and (i, n) ∈ M . This contradicts our definition
of an alignment: we have (i, n)(m, j) ∈M with i < m, but n > i, so the pairs (i, n) and
(m, j) cross.

Using this lemma, we now define 3 cases which can occur in our optimal alignment M ,
which also help us in formulating our recurrence. These are:

1. Either (m,n) ∈M ; or

2. the mth position of X is not matched; or

3. the nth position of Y is not matched.

LetOPT (i, j) denote the minimum cost of an alignment between x1x2 . . . xi and y1y2 . . . yj.
If case 1 holds, we pay αxmyn and then align x1x2 . . . xm−1 against y1y2 . . . yn−1; we get
OPT (m,n) = axmyn + OPT (m − 1, n − 1). If case 2 holds, we pay a gap cost of δ
since the mth position of X is not matched, and then we align x1x2 . . . xm−1 against
y1y2 . . . yn, for which we get OPT (m,n) = δ +OPT (m− 1, n). Similarly for case 3, we
get OPT (m,n) = δ +OPT (m− 1, n).

Using the same argument for the subproblem of finding the minimum-cost alignment
between x1x2 . . . xi and y1y2 . . . yj, we have the following lemma:

Lemma 2. The minimum alignment costs satisfy the following recurrence for i ≥ 1 and
j ≥ 1:

OPT (i, j) = min[αxiyj +OPT (i− 1, j − 1), δ +OPT (i− 1, j), δ +OPT (i, j − 1)]

Moreover, (i, j) is in an optimal alignment M for this subproblem if and only if the
minimum is achieved by the first of these values.

With this recurrence defined, we can know devise our algorithm for determining the
value of the optimal alignment easily. The pseudocode for doing so is as follows:
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Algorithm 11 : Sequence alignment using dynamic programming

function SeqAlignment(X,Y) ▷ X, Y are our strings
OPT ← Array[m][n]
for i = 0 to m do

OPT [i][0]← iδ

for j = 0 to n do
OPT [0][j]← jδ

for j = 1 to n do
for i = 1 to m do

if X[i] == Y[j] then
OPT [i][j] = min[αx[i]y[j] + OPT [i − 1][j − 1], δ + OPT [i − 1][j], δ +

OPT [i][j − 1]]
else

OPT [i][j] = min[δ +OPT [i− 1][j], δ +OPT [i][j − 1]]

return OPT [m][n]

Since this algorithm only gives us the value of the optimum solution, we would need
to determine the actual alignment The second fact of the lemma allows us to do so by
backtracking though OPT , starting at OPT [m][n]. Our recurrence shows us how the
value would have been set, with case 1 being the case when (i, j) were a valid pair in the
optimal alignment. Hence, whenever we see that OPT [i][j] = αx[i]y[j]+OPT [i−1][j−1],
we include (i, j) to our alignment, and move to OPT [i− 1][j− 1]. Else, we would either
go to OPT [i− 1][j] or OPT [i][j − 1] depending on which would be the smaller.

6 Bellman Ford (Single Source Shortest Paths)

Recall that we discussed the problem of the single source shortest path in a weighted di-
graph when we discussed the Dijkstra algorithm. In particular, we presented aO(|E| log |V |)
algorithm, called the Dijkstra algorithm that was able to calculate shortest paths for any
pair of vertices for a weighted digraph G = (V,E,W ), where all weights were positive.
We also discussed why Dijkstra was unable to work in the presence of negative edge
weights, and any strategies to make Dijkstra work on such graphs, such as reweighting
to remove negative edge weights, were unsuccessful. We repeat those arguments here
for the ease of the reader.

We consider the following graph, and try to run Dijkstra over it:
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Figure 19: An example graph with negative weights

Dijkstra with source A will add first C and then B to R and selects the path AC and
AB as shortest paths from A to B and C respectively. Clearly the shortest path from
A to C is the path ABC with total weight 2. One way to deal with negative weight
edges would be to multiply each weight with −1. This clearly doesn’t solve the problem
as the already positive weight edges will be become negative now. another way to deal
with negative weight edges is to shift all the weights to the positive side, i.e. to add a
large constant C to all the weights. If the constant C ≥ maxe∈E |w(e)|, then clearly all
the new weights will be now non-negative. Does this solve the problem? Consider the
following graph in Figure 20
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5

3

BC

D

−3

−1 A

8

6

BC

D

0

2

Figure 20: In the graph on the left, d(A,D) = 1 via the path ACBD. The largest
absolute value edge weight is 3. We add 3 to all the weights. In the resulting graph, on
the right, AD is the shortest path from A to D with length 6.

A key question comes to mind at this point, which is why is it necessary to be able to
take negative weight edges into account. This is necessary since there are real world
scenarios that may involve negative weights, for instance, if we describe a graph of
business transactions where selling results in positive revenue, and buying results in
costs i.e. negative revenue. We may want to have paths, which would be particular
series of transactions, with the least change in total revenue. With this in mind, we now
look into an algorithm that helps us to find all shortest paths in a digraph with arbitrary
edge weights. But before we do this, we first need some prerequisite conditions to our
problem, which allow us to actually propose a solution.
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6.1 Negative cycles

Any digraph can have a number of cycles, which are simply paths that return to the
source vertex. However, in a digraph that has negative edge weights can have what is
known as a negative cycle, which is simply a cycle whose sum of edge weights is negative.
Such cycles can be problematic to deal with, since their presence causes problems when
computing shortest paths. In principle, if there exists any path for a pair of vertices v, t
in a graph that contains a negative cycle in the path, then there exists no shortest path
from v to t. This is because one can build a path of arbitrary negative weight by simply
looping through the cycle as many times as desired, i.e. for any claim of a shortest path
between v and t, one can show a more shorter path by looping though the negative cycle.

6.2 Problem definition

As is evident from above, we would preferably not have a negative cycle in our weighted
digraph. With this condition in place, we now present a lemma that allows us to prove
that there is a shortest path available from v to t.

Lemma 3. Consider a weighted digraph G = (V,E,W ). If G does not have any negative
cycles, then there exists a cheapest path from v to t, both ∈ V that is simple, and has at
most |V | − 1 edges.

Proof. Consider a cheapest v → t path that uses at least |V | edges. This would mean
that there exists a cycle in the path, since with at least |V | edges, you would be visiting
at least |V | + 1 vertices, which would mean that at least 1 vertex is visited more than
once. If we were to remove this cycle, i.e. remove the paths that loop back to any
particular vertex, we would get a path that has at most |V | − 1 edges; having any more
would indicate that a cycle is present. Also, since there are no negative cycles, removing
the cycles would in fact result in a path that is cheaper than the original ≥ |V | edge
path. Since that path was supposed to be the cheapest path, the new path would in
fact be the most cheapest v → t path.

We now define our problem in formal terms and state what our end result should be:

Problem. Given a weighted directed graph G = (V,E,W ), where V and E are our
vertex and edge sets respectively and W is the set of weights for the edges, which can be
negative, and a source vertex s ∈ V , we would like to compute the shortest paths from s
to all other vertices v ∈ V . If this cannot be done, then output a negative cycle.

We will leave the output of a negative cycle for later, and for now focus on computing
the shortest paths from s to all vertices v ∈ V , assuming that there is no negative cycle.
As with all dynamic programming problems, we will first focus on looking at the optimal
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solution first.

Generally, graphs do not have a sequential nature that we can use. However, what
we do know that our optimal solution would be some order of vertices and edges, and
our subproblems would also have a ordered solution. By intuition, we can say that for
any shortest path between two vertices s and t, all subpaths in this path would also be
shortest for their respective source and destination. Given that in general a path can
have any number of edges, we allow ourselves to add an extra parameter to our opti-
mal solution, which is the number of edges that it can have. We look at the following
example to illustrate this:

s t

2 2

1
1

1

Figure 21: An example directed digraph

In Figure 21, consider that we are looking for shortest paths from s to t. With our
additional constraint of limiting the number of edges that the path can have, we can
now pose questions like ‘What is the shortest path from s to t that has k or less edges?’.
For this example, lets look at the shortest paths from s to t that have 2 or less edges.
The only such path is the top path, with a path length of 4 (the sum of its edge weights).
The bottom path has 3 edges, and as such is not considered in this situation. But if we
were to increase our edge limit to 3, we can now choose between the two paths, the one
with the shorter path length being selected. The bottom path in this case, has length
3, and as such is shorter than the upper path, and hence is selected as the shortest path
with 3 edges or less. This little example illustrates an important point, which is that
when we increase the number of edges permitted, we increase the size of our problem.
This point gives us an opportunity to define the subproblems in our problem. We start
with the lemma below:

Lemma 4. Let G = (V,E,W ) be a directed weighted graph and a source vertex s ∈ V .
G might or might not have a negative cycle. For every v ∈ V , i ← {1, 2, 3, . . .}, where
i is the maximum number of edges allowed, let P be the optimal solution, i.e. for all
paths that have at most i edges and are from s to v, P is the shortest path. Cycles are
permitted in this path, since there are a finite number of edges that can be used by the
path. We have two possible cases in this scenario:

1. Either P has ≤ (i− 1) edges, i.e. it is a shortest s→ v path with ≤ (i− 1) edges,
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or

2. P has i edges with last hop (x, v), and the rest of the path P ′, then P ′ is the shortest
s→ x path with at most (i− 1) edges

Proof. The first case of our lemma is proven by an obvious contradiction, and is trivial.
For our second case, let there be a path Q that is shorter than P ′, in that Q is a path
from s to x, has ≤ (i − 1) edges. If so, then Q + (x, v), which is from s to v, has ≤ i
edges, has shorter path length than P ′ + (x, v). This is obviously a contradiction, since
it contradicts the optimality of P . Hence proved.

With our optimal solution and its subproblems defined, we now move to define the re-
currence for our problem, which will allow us to devise the required algorithm. We start
as follows:

Let OPT (i, v) be the minimum length of a s → v path with ≤ i edges. We define
OPT (i, v) to be ∞ if there are no paths from s to v that take at most i edges. This
would be true for most destination when i is small. For every v ∈ V, i ← {1, 2, 3, . . .},
we have the following recurrence.

OPT (i, v) = min

{
OPT (i− 1, v)

min(x,v)∈E

{
OPT (i− 1, x) + w(x, v)

The second case simply takes the minimum of all s→ x paths where x is one edge away
from v and has v in its out-neighborhood plus the weight of the (x, v) edge. The cor-
rectness of this recurrence follows from the optimal substructure lemma that we defined
earlier.

We said earlier that we will not consider that the graph has any negative cycles, and
we now explain why we did so. Suppose input graph G has no negative cycles. This
means that all shortest paths in such a graph will not have cycles, since all cycles would
have positive weight and removing such cycles from the paths only decreases the length.
As such, these shortest paths would have at most (|V | − 1) edges. This point gives us
a upper limit on i which was our edge limit, which, in absence of negative cycles, only
needs to go up to (|V | − 1), since moving i further makes no sense in this case. So, we
now have a limit on the amount of subproblems to solve, which is to compute OPT (i, v)
for all i← {0, 1, 2, 3, . . . , |V | − 1}, and for all v ∈ V .

We can now write out the pseudocode for the Bellman-Ford algorithm. It is as fol-
lows:
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Algorithm 12 : Bellman-Ford algorithm

function BellmanFord(G,s) ▷ G = (V,E,W ) and s is source vertex
OPT ← [|V | − 1][|V |] ▷ Two-dimensional array
OPT [0][s] = 0
for v ∈ V \ s do

OPT [0][v] =∞
for i = 1, 2, . . . , (|V | − 1) do

for v ∈ V do
OPT [i][v] = min[A[i− 1][v],min(x,v)∈E[A[i− 1][x] + w(x, v)]]

return OPT ▷ Final answers at OPT [|V | − 1][v] for all v ∈ V

6.3 Running example on pseudocode

We now look at an example run of the Bellman-Ford algorithm to understand how it
works, as shown in Figure 22. s is the source vertex. For this graph, since there are 5
vertices, i would take the value of at most 4, and will iterate over the range {0, 1, 2, 3, 4}.
We set up the array as in Figure ??, with i indices as the rows and v indices as the
columns.

For i = 1, we now compute OPT [1][v] for all v ∈ V . OPT [1][s] gets 0, and since only
a and c are accessible from s ,there values get updated. Since OPT [0][a] and OPT [0][c]
are∞, any positive weight would be better, so we will update the values for a and c with
the weights of (s, a) and (s, c) respectively. The rest of the vertices, being inaccessible
in one hop from s , will get ∞.

For i = 2, we compute OPT [2][v]. s gets 0, a gets its previous value, since there is no
2-hop path that is shorter than the current 1 hop path. But c now has two choices, either
it retains the old value OPT [1][c] which equals 4, or it updates based on the 2 hop path
{s, a, c}, which has weight OPT [1][a] +w(a, c) = 2+1 = 3. Since the latter is lower, we
would select that value. b is now reachable, and so gets OPT [1][a] + w(a, b) = 4, and t
gets OPT [1][a] +w(a, t) = 8. Note that we did not use a’s updated value, but the value
from the previous iteration.

We now only show the resultant arrays for the subsequent iterations, and leave it as an
exercise for the reader to determine the updates that were made.
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(e) Iteration i = 3
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(f) Iteration i = 4

Figure 22: Example Run of Bellman Ford

6.4 Runtime

The runtime for the Bellman-Ford algorithm would at first look to be O(n2), but it is
not so, but in fact the runtime comes out to be O(|E||V |). This is because the total
work is simply O(|V | ×∑

v∈V in− deg(v)), since we are evaluating for each vertex, and
are looking at most in − deg(v) nodes when computing the optimal solutions in each
iteration. Since

∑
v∈V in− deg(v) = |E|, we get O(|V ||E|).
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6.5 Detecting negative cycles

Recall that we had put the possibilities of there being negative cycles in our graph back
in order to describe our algorithm. We now bring that possibility back in, in order
to address it. Ideally, we would want that the algorithm reports back the fact that G
contains a negative cycle if it encounters one. In order to do so, we make a claim: by
running the algorithm for one more iteration, we will be able to determine whether the
graph contains a negative cycle or not. We state the claim more formally as follows:

Claim 5. G does not contain a negative cycle that is reachable from s if, when the
Bellman-Ford is run for one more iteration of i i.e. at i = |V |, there is no change in
the shortest path lengths for any vertex v ∈ V i.e. OPT [|V |][v] = OPT [|V | − 1][v] for
all v ∈ V .

As a consequence of this claim, when we run the algorithm for |V | iterations and see
that there is no change in the last two rows, we know that there is no negative cycle,
and return the values back as the shortest path lengths. But, if there were any changes,
and those changes could and would only be reductions in the value of the shortest
path length, we know that there is a negative cycle that is reachable from s, and as
consequence, we return that there is a negative cycle. But before we accept this claim,
we need to prove it, and it is as follows.

Proof. We first look at the first part of the claim that if G does not contain a negative
cycle, there is no change in the values in the new iteration. This claim has been proved
before by the very first lemma that defined in this section. As for the second part of
the c claim, which states that if the values of OPT do not change from the |V | − 1th to
the |V |th iteration, then G does not contain a negative cycle. Assume that the former
case is true, and let d(v) denote the common value of OPT [|V | − 1][v] and OPT [|V |][v].
Recall the recurrence by which this value is calculated. We can rewrite this recurrence
in terms of d(v) as follows:

d(V ) = min

{
d(v)

min(x,v)∈E

{
d(x) + w(x, v)

Since d(v) was chosen instead of d(x) +w(x, v) we can say that the following inequality
holds:

d(v) ≤ d(x) + w(x, v). for all edges (x, v) ∈ E

Or:
d(v)− d(x) ≤ w(x, v). for all edges (x, v) ∈ E
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Now consider an arbitrary cycle C. If the previous inequality holds, then we can say the
following: ∑

(x,v)∈C

w(x, v) ≥
∑

(x,v)∈C

(d(w)− d(v))

All directed cycles have the property that each vertex in the cycle appears only once as
the start of some arc(an order of edges), and only once as the end of an arc, so each
d-value appears once as a positive value, and once as a negative value. This results in a
total result of 0.
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