
Algorithms

Lecture : Greedy Algorithms - Huffman Codes
Imdad ullah Khan

Contents

1 Data Compression 1
1.1 Lossless and lossy Compression . 2
1.2 Adaptive and non-adaptive Compression . 3

2 Binary Codes 3
2.1 Fixed Length Codes . 4
2.2 Variable Length Codes . 4
2.3 Prefix Free Codes: . 6
2.4 Visualizing Codes as Binary Trees . 6

3 Finding the Optimal Prefix Free Code 8
3.1 Fano-Shanon code . 9
3.2 Generic Greedy Algorithm . 9

4 Huffman Code 12
4.1 Implementation and Runtime . 15

4.1.1 Naive Implementation . 15
4.1.2 Implementation using Priority Queue 15

4.2 Correctness . 16
4.3 Optimality . 16

1 Data Compression

Data Compression is used to facilitate storing large files by reducing their size. There are
two different types of goals associated with compression:

� Maximize ease of access, manipulation and processing

� Minimize size−especially important when storage or transmission is expensive.

Naturally, these two objectives are often at odds with each other. We will focus on the
second objective. In general, data cannot be compressed. For example, we can not, without
any loss of information, represent all m-bit strings using (m− 1)-bit strings, since there are

1

2m possible m-bit strings and only 2m−1 possible (m−1)-bit strings. So when is compression
possible?

� If only a relatively small number of the possible m-bit strings appear, compression is
possible.

� If the same “long” substring appears repeatedly, we could represent it by a “short”
string.

� If we relax the requirement that every string have a unique representation, then com-
pression might work but make “similar” strings identical.

1.1 Lossless and lossy Compression

Let D be the original document and D′ be the recovered document (the one decompressed
after some kind of compression). In lossless compression, we require that D = D′. This
means that the original document can always be recovered exactly from the compressed doc-
ument. Examples include: Huffman coding, Lempel–Ziv (used in .gif images) etc. In lossy
compression, D′ is close enough but not necessarily identical to D. Examples include: .mp3
(audio), .jpg (images) and .mpg (videos) etc.

source: percona.com

Lossless Compression Lossy Compression

= original data ≃ original data

Huffman

Shannon Fano

JPEG

MPEG

2

1.2 Adaptive and non-adaptive Compression

Compression algorithms can be either adaptive or non-adaptive. A non-adaptive algorithm
assumes prior knowledge of the data (e.g., character frequncies) whereas an adaptive algo-
rithm assumes no knowledge of the data, but builds such knowledge.

The purpose of introducing the above terminology and definitions is to make you familiar
with compression and you can easily justify different techniques of compression with regards
to their nature.

Lets see compression with a concrete example (MP3 compression), first there is the process
of conversion from analog to digital (which is beyond the scope of this lecture), followed by
compressing the digital signal. , In the MP3 audio compression scheme, a sound signal is
encoded in three steps.

1. It is digitized by sampling at regular intervals, yielding a sequence of real numbers
s1, s2, . . . , sT . For instance, at a rate of 44, 100 samples per second, a 50-minute sym-
phony would correspond to T = 50× 60× 44100 ≈ 130 million measurements.

2. Each real-valued sample si is quantized: approximated by a nearby number from a
finite set

∑
. This set is carefully chosen to exploit human perceptual limitations, with

the intention that the approximating sequence is indistinguishable from s1, s2, . . . , sT
by the human ear.

3. The resulting string of length T over alphabet
∑

is then encoded in binary.

This example shows the process of compression and encoding scheme. Since computers
ultimately operate on sequences of bits (i.e., sequences consisting only of the symbols 0
and 1), one needs encoding schemes that take text written in richer alphabets (such as the
alphabets underpinning human languages) and converts this text into long strings of bits.
We will discuss different techniques for encoding strings of characters as binary codes.

2 Binary Codes

A binary code represents text, computer processor instructions, or any other data using a
two-symbol system. The two-symbol system used is often the binary number system’s 0 and
1.

Example 1. Suppose that we have a 100, 000 characters data file that we wish to store in
computer. The file contains only 6 characters, appearing with the following frequencies:

A binary code encodes each character as a binary string or codeword. We would like to find

3

a b c d e f Total
Frequency in 000’s 45 13 12 16 9 5 100

a binary code that encodes the file using as few bits as possible i.e. compresses it as much
as possible. There are two different coding schemes to represent characters in binary.

2.1 Fixed Length Codes

In this approach, fixed number of source symbols are encoded into a fixed number of output
symbols. i.e. each codeword has the same length. For example, English characters a−z and
some punctuations make a total of 32 different characters, so for every character to have a
unique fixed length binary code, what should be length of a codeword? It will need 5 bits
for each character to be uniquely represented, as 25 = 32. ASCII and Unicode are common
examples of fixed length codes. Here the problem is length of codeword (number of bits for
a code), it grows very big and one can face storage problem. To overcome this issue, we try
to reduce the number of bits somehow.

2.2 Variable Length Codes

In this approach, codewords may have different lengths. The motivation for variable length
code is that frequencies of different characters may vary in a document and as our goal is
to minimize the overall size of binary encoded files with lossless encoding, most frequent
characters can be encoded with shorter codewords.

Example 2. Lets see an example of English alphabet, coding and translation of a small
string. Then we will see that how total length is reduced substantially in comparison with
fixed length coding scheme. We will see it mean compression is achieved ? Lets see.

Characters a b c d e f Total
Frequency 45k 13k 12k 16k 9k 5k 100k
Fixed-Length Code 000 001 010 011 100 101 3 × 100k
Var. Length Code 0 101 100 111 1101 1100 224k

The fixed length-code requires 300, 000 bits to store the file. The variable-length code uses
only 224, 000 bits, saving about 25% in size, i.e. the file is compressed by about 25%, saving
a lot of space! Can we do better than this?

Example 3. Lets take an another example, suppose we have the following codes for the
string aabbaaabcd.

4

Characters a b c d Total String
Frequency 5 3 1 1 10 aabbaaabcd
Fix-Len Code 00 01 10 11 2 ·10 = 20 bits 00000101000000011011
Var. Len Code 0 10 110 111 1 · 5 + 2 · 3 + 3 · 1 + 3 · 1 = 17 bits 00101000010110111

Example 4. Lets see another example, can we further decrease the length of codewords?
It can be seen in the following example that there is another variable-length coding scheme
which does even more compression than that of the previous one,

Characters a b c d Total String
Frequency 5 3 1 1 10 aabbaaabcd
Fix-Len Code 00 01 10 11 2 ·10 = 20 bits 00000101000000011011
Var. Len Code 0 10 110 111 1 · 5 + 2 · 3 + 3 · 1 + 3 · 1 = 17 bits 00101000010110111
Var. Len Code2 0 1 01 10 1 · 5 + 1 · 3 + 2 · 1 + 2 · 1 = 12 bits 001100010110

Although this strategy seems like a good strategy, as it minimizes the length of encoding,
there is a critical issue with this variable length technique, i.e. ambiguity in decoding of the
variable length codes. The following example highlights this issue

Example 5. Given a code(corresponding to some alphabet Γ) and a message it is easy to
encode the message. Just replace the characters by the codewords. Example: Σ = {a, b, c, d}

� code C1 (fixed length) given as C1→ {a = 00, b = 01, c = 10, d = 11}, bad is encoded
as 010011

� code C2 (variable length) given as C2 → {a = 0, b = 110, c = 10, d = 111}, bad is
encoded as 1101111

� code C3 (variable length) given as C3 → {a = 1, b = 110, c = 10, d = 111}, bad is
encoded as 1101111

Decoding: Given an encoded message, decoding is the process of converting it back into the
original message.
For example relative to C1, 010011 is uniquely decodable to bad. But, relative to C3; 1101111
is not uniquely decipherable since it could have encoded either bad or acad. here a = 1 is
prefix of b = 110.

Therefore, the unique decipherability property is needed in order for a code to be useful. In
order to ensure a code is unique, we define prefix-free codes.

5

2.3 Prefix Free Codes:

In this variable length encoding scheme, no codeword is a prefix of another codeword, hence
named prefix free codes. This must be true for all pairs of codes. There is no ambiguity
while decoding prefix free codes.

Example 6. {a = 0, b = 110, c = 10, d = 111} is a prefix-free code.

In example 5, C2 is a prefix free code and 1101111 is uniquely decodable to bad whereas C3
is not a prefix free code. In example 4, Var. Len Code is prefix free whereas Var. Len Code2
is not prefix-free.

2.4 Visualizing Codes as Binary Trees

Binary codes can be represented as binary trees. Nodes are labeled with characters and
edges to the left and right child of a node are labeled 0 and 1 respectively. The bits along
the path from the root to a node is the code for the character at that node. If the symbols
or characters are labeled only at the leaf nodes, the codes are prefix free. A character can
be decoded easily by reading the encoded string from left to right starting at the root of the
tree and moving to left and right child depending on the encoded bit being 0 or 1 until a
leaf node is reached, which is labeled with the character the code substring decodes to. The
encoded string from the next bit is again read in the binary tree starting from the root till a
lead node is reached, which represents the next decoded character. The process is repeated
until the encoded string is exhausted. Clearly, this can be easily automated and there is no
ambiguity.

Figure 1 and figure 2 show the trees for two codes of example 2. Note that these are not
binary search trees, since the leaves node not appear in sorted order and internal nodes do
not contain character keys.

6

a : 45

0 1 1 1

0 1

0 0

0

10

b : 13 c : 12 d : 16 e : 9 f : 5

58 28 14

86 14

100
a

b

c

d

e

f

Symbol Codeword

000

001

010

011

100

101

Figure 1: Tree Corresponding to the Fixed Length coding scheme in Example 2 .

a : 45

b : 13c : 12 d : 16

e : 9f : 5

14

100

0

25

55

30

1

1

1

1

11

0

0

0

0

a

b

c

d

e

f

Symbol Codeword

0

101

100

111

1101

110

Figure 2: Tree Corresponding to the variable Length coding scheme in Example 2 .

Number of bits needed to encode a symbol is the depth of the corresponding leaves, as shown
in above example. For a document D, where frequency of alphabet ai is f(ai), compressed
with an encoding scheme represented as a binary tree T , where node i is labeled with ai, the

7

number of bits needed for encoding is

B(D) =
∑
i∈Σ

f(ai) · [depth of i in T]

An optimal code for a file is always represented by a full binary tree, in which every non leaf
node has two children as shown in Figure 3). The fixed-length code in the above example
example is not optimal since its tree (Figure 1) is not a full binary tree, i.e. it contains
codewords beginning with 10. . . , but none beginning with 11. . . .

a b c d

e

0

0

0 01

1

1

1

a

b

c

d

e

Symbol Codeword

000

001

010

011

1

Figure 3: Correspondence between Binary Tree and prefix codes.

Since an optimal code tree T must be a full binary tree, it can said that if C is the alphabet
set from which the characters are drawn and all character frequencies are positive, then the
tree for an optimal free fix code tree T has exactly |C| leaves, one for each letter of the
alphabet, and exactly |C| −1 internal nodes.

3 Finding the Optimal Prefix Free Code

The problem of finding an optimal encoding can therefore be formulated as follows.

Problem 1. Given an alphabet Σ = {a1,. . . ,an} with frequency distribution f(ai), find

a binary prefix code C for A that minimizes the number of bits B =
n∑

a=1

f(ai)L(c(ai)) =∑
a∈Σ

f(ai) · [depth of a in T] needed to encode a message of
n∑

a=1

f(a) characters, where c(ai)

8

is the codeword for encoding ai, L(c(ai)) is the length of the codeword c(ai) and B is the sum
of code lengths weighted by frequency.

3.1 Fano-Shanon code

We begin to devise a solution to this problem by discussing some initial sub-optimal ideas.
The Fano-Shanon code is a top/down divide and conquer approach which partitions Σ
into Σ1 and Σ2 each with roughly equal frequency distribution, i.e. half the total frequencies.
T1 for Σ1 and T2 for Σ2 are computed recursively. All codes of T1 are prepended with a 0
and the other codes with a 1, i.e. T1 and T2 are fixed as left and right subtree of new root.
These types of prefix codes can be fairly good in practice.

source:https://stackoverflow.com

However, no version of this top-down splitting strategy is guaranteed to always produce an
optimal prefix code. Shannon and Fano knew that their approach did not always yield the
optimal prefix code, but they could not see how to compute the optimal code without a
brute-force search. This problem was solved by David Huffman.

Huffman developed a greedy approach for constructing optimal prefix free codes. The codes
produced by this algorithm are called Huffman Codes.

3.2 Generic Greedy Algorithm

The following greedy algorithm constructs a prefix free code tree.

9

Algorithm Generic Algorithm (D)
Make every symbol ai a tree Tai

for i = 1 to n− 1 do

Select two trees Tx and Ty

Merge(Tx, Ty) ▷ Make them left/right child of a new node

return the only remaining tree T

In what follows we give an example run of this generic algorithm.

10

a b c d e f i j k l m a b c d e f i j k l m a b c d e f i j k l m

a b c d e f i j k l m a b c d e f i j k l m a b c d e f i j k l m

a b c d e f i j k l m a b c d e f i j k l m a b c d e f i j k l m

a b c d e f i j k l m a b c d e f i j k l m

The generic greedy algorithm is clearly correct, i.e. it constructs a prefix free code because all
symbols always and only remain at leaves. Note that we cannot argue about the optimality
of this algorithm as it doesn’t take into account the frequencies of symbols.

11

4 Huffman Code

The question is which two subtrees should be merged. Clearly, this decision should be made
based on the symbol frequencies, i.e. we have to take into account the frequency distribution.

Note that merging two trees increases code lengths of all leaves within those tree by one bit.
This is so because code length of a symbol is the number of merges its tree undergoes. We
therefore, would like symbols that are more frequent to go through fewer merges, while less
frequent symbols can go through more merges.

This intuition is the basic idea of Huffman coding. Huffman Coding (greedily) chooses two
symbols x and y with lowest frequencies (min and second min). It inserts a new meta-symbol
z for the merged trees (essentially the symbols x and y are merged into one symbol z). It
then deletes x and y and their frequencies. While the frequency of the new symbol z is the
sum of frequencies of x and y. This process is repeated until one symbol remains.

The Huffman’s Coding algorithm to construct a Prefix Free Code Tree is given in the fol-
lowing pseudocode.

Step 1. Let x and y be two characters with lowest frequency (ties broken arbitrarily) from
alphabet set A. Construct a subtree which has these 2-characters as leaves. Label the root of
this subtree as z.

Step 2. Frequency of this meta-character z is the sum of the frequencies of its leaf nodes x
and y. Remove x, y from and add z to the alphabet set to form A′ = A∪{z}−{x, y}. Note that |A′| =
|A| − 1.

Step 3. Repeatedly perform steps 1 and 2 until A contains only one character.

As shown in Figure ??, the more frequent characters have shorter bit codes and less frequent
characters have longer bits codes which minimizes the length of the encoding. All codes are
prefix-free codes, therefore each code can be decoded to a unique character. Hence, both
issues have been resolved.

Example 7. Consider the alphabet set along with frequencies:

{a : 45, b : 20, c : 10, d : 17, e : 6, f : 5, g : 18}.

The code tree generated by the Huffman algorithm shown in Figure ??.

The optimal Huffman codes are:

a : 0 b : 100 c : 1010 d : 110 e : 10111 f : 10110 g : 111

In what follows we give an example run of this generic algorithm.

12

z : 11

y : 21

w : 41

v : 76

x : 35

u : 76

a : 45 b : 20 c : 10 f : 5 e : 6 d : 17 g : 18

z : 11

y : 21

w : 41

v : 76

x : 35

u : 76

a : 45 b : 20 c : 10 d : 17 g : 18f : 5 e : 6

z : 11

y : 21

w : 41

v : 76

x : 35

u : 76

a : 45 b : 20 c : 10 f : 5 e : 6 d : 17 g : 18

z : 11

y : 21

w : 41

v : 76

x : 35

u : 76

a : 45 b : 20 c : 10 f : 5 e : 6 d : 17 g : 18

13

z : 11

y : 21

w : 41

v : 76

x : 35

u : 76

a : 45 b : 20 c : 10 f : 5 e : 6 d : 17 g : 18

z : 11

y : 21

w : 41

v : 76

x : 35

u : 76

a : 45 b : 20 c : 10 f : 5 e : 6 d : 17 g : 18

z : 11

y : 21

w : 41

v : 76

x : 35

u : 76

a : 45 b : 20 c : 10 f : 5 e : 6 d : 17 g : 18

z : 11

y : 21

w : 41

v : 76

x : 35

u : 121

a : 45 b : 20 c : 10 f : 5 e : 6 d : 17 g : 18

0

0

0

0

0 0

1

1

1 1

1

1

14

4.1 Implementation and Runtime

4.1.1 Naive Implementation

The pseudo code for an implementation of Huffman Tree is given in Algorithm 2 takes O(n)
preparation time, n − 1 iterations with 2FindMin operations and other O(1) operations
in each iteration. Thus, the total runtime of this implementation is O(n2), which can be
improved by utilizing a more suitable data structure designed for repeated FindMin oper-
ations.

Algorithm 2 : HUFFMAN-TREE(S, f(·))
for x ∈ S do

MakeNode(x) ▷ x is both symbol and pointer

for i = 1 to n− 1 do
x← FindMin(S)
S ← S \ {x}
y ← FindMin(S)
S ← S \ {y}
MakeNode(z)
z · freq ← x · freq + y · freq
S ← S ∪ {z}

return the only node in S

4.1.2 Implementation using Priority Queue

Recall the priority queue data structure. The implementation of Huffman-Tree using a
priority queue in Algorithm 3 which performs n Insert operations initially. In each of the
n−1 iterations, 1 Insert and 2 ExtractMin operations are done. Each of these operations
takes O(log n) time and the total number of operations is n+ 3(n− 1). Therefore, the total
runtime is now reduced to O(n log n).

15

Algorithm 3 Huffman-Tree (S, f(·))
H ← InitializeHeap(S, f(·)) ▷ min heap keyed by frequencies
for i = 1 to n− 1 do

z ← NewNode()
x← ExtractMin(H)
y ← ExtractMin(H)
z · left← x
z · right← y
z · freq ← x · freq + y · freq
Insert(H, z)

return ExtractMin(H) ▷ Return the root of the tree

4.2 Correctness

The Huffman Codes algorithm is correct because by definition all the alphabets are at the
leaf nodes, and the code for each alphabet is the path from the root to the alphabet node.
Therefore, code of no alphabet can be a prefix of another and the Huffman codes are prefix-
free.

4.3 Optimality

To prove that the Huffman Codes algorithm is optimal, we show that the problem of de-
termining an optimal prefix free code exhibits the greedy-choice and optimal-substructure
properties.

Lemma 1 (Greedy Choice). Let S be a set of characters and x and y be the least and second
least frequent symbols in S. Then there exists an optimal prefix free code scheme where the
codes for x and y have the same length and differ only in the last bit. i.e. In some optimal
tree T , the two least frequent symbols x and y are siblings.

Proof. Let T be an optimal prefix free code tree, and let a and b be two siblings at the
maximum depth of the tree (must exist because T is full). Assume without loss of generality
that f(a) ≤ f(b). Since x and y are the two least frequent symbols and f(x) ≤ f(y), it
follows that f(x) ≤ f(a) and f(y) ≤ f(b).

Let L(x) be the depth of the node for symbol x in T . Since a and b are at the deepest level
of the tree, we know that L(a) ≥ L(x) and L(b) ≥ L(y). Let the encoding cost of T be
B(T).

Let T ′ be the resulting tree if the positions of x and a in T are switched and let T ′′ be the
resulting tree if the positions of y and b in T ′ are switched, as shown in figure 4

16

a

bx

y

T ′

a

x y

T ′′

a b

x

y

T

b

Figure 4: Exchanging a with x and b with y to get T ′ and T ′′

B(T ′) = B(T)− f(x)L(x)− f(a)L(a) + f(x)L(a) + f(a)L(x)

= B(T)− (f(a)− f(x))(L(a)− L(x))

≤ B(T)

By a similar argument as above, B(T ′′) ≤ B(T).

Therefore, since T is optimal, B(T ′′) = B(T ′) = B(T) and T ′ and T ′′ are optimal trees.
Hence, the final tree T ′′ satisfies the statement of the claim.

Lemma 2 (Optimal Substructure). Given an alphabet S with frequencies f(·), let:

� x, y be the two most infrequent characters in S (with ties broken arbitrarily)

� z /∈ S be a new symbol, with f ′(z)← f(x) + f(y)

� S ′ = S\{x, y} ∪ {z}

� T ′ be an optimal tree for (S ′, f ′)

Then, T is an optimal tree for (S, f), where T is a copy of T ′ in which the leaf for z has
been replaced by an internal node having x and y as children.

Proof.

B(T) = B(T ′)− f(z)L′(z) + [f(x) + f(y)][L′(z) + 1]

= B(T ′)− f(z)L′(z) + [f(x) + f(y)]L′(z) + [f(x) + f(y)]

= B(T ′) + [f(x) + f(y)]

17

Suppose T is not optimal. If T is not optimal, then there is a T ′′ with B(T ′′) < B(T) in
which x and y are siblings. Then,

B(T ′′) = B(T ′)− f(x)− f(y)

≤ B(T ′)

Considering T ′′ with the parent of x and y as a leaf is a better tree than T ′ for [S ′, f ′(·)]
which contradicts the optimality of T ′. Therefore, T must have been optimal in the first
place.

The proof of optimality of Huffman’s algorithm, i.e. is produces an optimal prefix code tree
for all inputs, is by induction on n, the number of symbols.

Proof. The basis case (n = 1) is trivial, since there is only one tree possible. For n > 2, then
by Lemma 2, the two characters xandy of lowest probability are siblings at the deepest level
of an optimal tree. Huffman’s algorithm replaces these nodes by a symbol z whose frequency
is the sum of the frequencies of x and y. The induction hypothesis is that the Huffman’s
algorithm computes the optimum tree over the resulting alphabet of n− 1 symbols. Call it
Tn−1. Replacing z with nodes x and y results in a tree Tn whose cost is higher by a fixed
amount f(z) = f(x) + f(y). Since Tn−1 is optimal, and the cost of replacement does not
depend on the tree’s structure, Tn is also optimal.

18

	Data Compression
	Lossless and lossy Compression
	Adaptive and non-adaptive Compression

	Binary Codes
	Fixed Length Codes
	Variable Length Codes
	Prefix Free Codes:
	Visualizing Codes as Binary Trees

	Finding the Optimal Prefix Free Code
	Fano-Shanon code
	Generic Greedy Algorithm

	Huffman Code
	Implementation and Runtime
	Naive Implementation
	Implementation using Priority Queue

	Correctness
	Optimality

