
Algorithms

Lecture : Interval Scheduling and Coloring
Imdad ullah Khan

Contents

1 Interval Scheduling (Activity Selection) 1
1.1 Compatible and Conflicting Requests . 1
1.2 Generic Greedy algorithm for Interval Scheduling 2

1.2.1 Earliest Starting Time First . 2
1.2.2 Latest Finishing Time First . 2
1.2.3 Shortest Request First . 3
1.2.4 Least Conflicting (Most Compatible) First 4

1.3 Earliest Finishing Time First . 5
1.3.1 Proof of Correctness: . 5
1.3.2 Proof of Optimality: . 5
1.3.3 Implementation and Runtime: . 7

2 Interval Coloring (Interval Partitioning) 7
2.1 Degree of an Interval and Depth of a set of Interval 8
2.2 Greedy Interval Coloring Algorithm (known depth) 9

2.2.1 Proof of Correctness . 9
2.2.2 Proof of Optimality . 10

2.3 Greedy Interval Coloring Algorithm (unknown depth) 10
2.3.1 Implementation and Runtime . 10
2.3.2 Improved runtime and implementation using a Min-Heap 11

1 Interval Scheduling (Activity Selection)

Suppose we are given a set R of n requests : {r1, r2, . . . , rn} for scheduling on a single
resource. The ith request ri is described by its start and finish time denoted by s(i) and f(i)
respectively. Duration d(i) of a request i is f(i)− s(i) where s(i) < f(i) is implicitly given.

ri

s(i) f(i)

1

This situation appears in many practical scenarios, e.g. classes/exams scheduling, NADRA
servicing windows where each request takes a certain duration, and in parallel processing.

1.1 Compatible and Conflicting Requests

We visualize each request as an interval on the time line. Two requests ri and rj are said
to be compatible if they do not overlap in any interval of time. Otherwise, they are said to
be conflicting. Given two requests ri and rj we can check in constant time whether they are
compatible. It is easy to see that a pair of requests ri and rj is compatible if and only if

s(i) < f(i) < s(j) < f(j) or s(j) < f(j) < s(i) < f(i), (1)

i.e. either ri comes completely before rj or vice-versa.

Set-wise compatible: A set of requests that are all pairwise compatible.

Problem 1 (Interval Scheduling). Given a set of requests R, find the largest subset of
compatible requests.

The selected subset is required to be compatible so that they can be scheduled on a single
resource.

r1 r2

r5r4

r6 r7 r8

r3

Figure 1: r1 and r2 are compatible, r4 and r8 are compatible whereas r1 and r4 are conflicting
and r5 and r7 are conflicting. Set {r1, r2, r8} is compatible whereas {r1, r2, r5, r8} is not
compatible. The largest compatible subset is {r6, r2, r7, r8}.

1.2 Generic Greedy algorithm for Interval Scheduling

A natural greedy algorithm for interval scheduling problem is to process requests in some
fixed order by selecting a request ri fromR greedily and deleting all other requests conflicting
with ri. This process is repeated until no requests remain.

2

Algorithm Interval Scheduling (R)
A← ∅
while R ≠ ∅ do

select a request rx from R
remove from R all those requests conflicting with rx
A← A ∪ {rx}

return A

Clearly, if the algorithm selects ri, then it cannot select any request that is conflicting with ri.
Therefore, this algorithm is correct by design. The optimality of the algorithm, i.e. whether
it outputs the largest compatible subset, depends on the greedy approach for selecting ri,
i.e. in what order should the requests be processed. We discuss a few selection rules below.

1.2.1 Earliest Starting Time First

Select ri that has the smallest s(i). The idea is to start working as early as possible. Figure
2 provides a counterexample to prove that this greedy approach is not optimal.

Input

Algorithm’s solution Optimal solution

r1

r2 r3 r4 r5

r1

r2 r3 r4 r5

r1

r2 r3 r4 r5

Figure 2: Earliest Starting Time First: The algorithm’s selection (left) is only r1 as it starts
earliest and the rest are conflicting with r1, while the optimal solution (right) is the subset
{r2, . . . , r5} of 4.

1.2.2 Latest Finishing Time First

Select ri that has the largest f(i). The idea of this approach is similar to earliest starting
time, to keep using resources until as late as possible. Figure 3 provides a counterexample
to prove that this greedy approach is not optimal either. The problem with this approach
is same as above, on the example in Figure ?? it selects the r1, while the optimal solution
again is selecting r2, . . . , r5.

3

Input

Algorithm’s solution Optimal solution

r1

r2 r3 r4 r5

r1

r2 r3 r4 r5

r1

r2 r3 r4 r5

Figure 3: Latest Finishing Time First: The algorithm’s selection (left) is the same as above,
1 request i.e. r1, whereas the optimal solution is the subset {r2, . . . , r5} of 4

1.2.3 Shortest Request First

Both of the above selection rules ignore duration of the requests. The next attempt is to
select the request with smallest duration, i.e. a request for which d(i) = f(i) - s(i) is as
small as possible. Despite seeming better than the previous approaches, this one too can
produce a suboptimal result, as shown in Figure 4

Input

Algorithm’s solution Optimal solution

r1 r3

r2

r1 r3

r2

r1 r3

r2

Figure 4: Shortest Request First: The algorithm’s selection (left) is just 1 request r2 whereas
the optimal solution is {r1, r3}

1.2.4 Least Conflicting (Most Compatible) First

The above approaches did not consider the number of conflicting request during selection
of request. The next attempt is to greedily select a request with a minimum number of
conflicting requests. However, this approach is not optimal either, as shown in Figure 5

4

Input

Algorithm’s solution Optimal solution

r3r2r1 r4

r7r5 r6

r3r2r1 r4

r7r5 r6

r3r2r1 r4

r7r5 r6

Figure 5: Least Conflicting First: The algorithm first selects r6 as it has 2 conflicts while
all other requests have at least 3 conflicts. Hence after selecting r6, the algorithm can only
select r1 and r4 or some other combination of two requests other than r2 and r3. However,
the optimal solution is {r1, r2, r3, r4}.

1.3 Earliest Finishing Time First

Select ri with smallest f(i). This approach is based on the intuition that the resourced
should be freed as early as possible for other requests and produces the optimal result for all
the examples we have seen so far in Figures 3, 4 and 5. However, it is not enough to show
that this approach works for a few numbered examples. It must be proven formally that the
following earliest finishing time first greedy interval scheduling algorithm selects the largest
compatible subset for all inputs.

Algorithm Earliest Finishing Time First Interval Scheduling (R)
A← ∅
while R ≠ ∅ do

Select the request rx with smallest finishing time from R
Remove from R all those requests conflicting with rx
A← A ∪ {rx}

return A

1.3.1 Proof of Correctness:

The algorithm is correct by design, as in each iteration, only a request compatible with the
selected set A so far A is added to A. If the request ri added to A conflicts with another

5

previously added request rj, then ri would have been deleted when rj was added to A
according to the algorithm, which is a contradiction.

1.3.2 Proof of Optimality:

Let O be an optimal solution, should we prove that A = O? There may be more than one
optimal solution and at best A is equal to a single one of them. Therefore, we need to just
prove that |A| = |O|, i.e. A contains the same number of requests as O.

Let i1, i2, . . . , ik be the set of requests in A in the order they were added to A and |A| = k.
Since the request were added in order of increasing finishing time, it can be said that A is
sorted by finishing time.

Similarly, let the set of requests in O be denoted by j1, j2, . . . , jk , in the increasing order of
finishing time and |O| = m.

The goal is to prove that k = m. Note that the requests in O and A are compatible, which
implies that the starting time have the same order as the finish time. See (1).

The greedy strategy guarantees that f(i1) ≤ f(j1), as all requests are available to the
algorithm in the beginning and the one with the earliest finishing time is selected. We need
to show that the greedy selection ‘stays ahead’ i.e. each of its interval finishes at least as
soon as the corresponding interval in O. This follows from the intuition that the algorithm
stays ahead by releasing the resource as early as possible, Thus, we now prove that for each
r ≥ 1, the rth accepted request in the algorithm’s schedule finishes no later than the rth

request in optimal schedule.

Lemma 1. For 1 ≤ r ≤ k
f(ir) ≤ f(jr).

Note by the optimality of O, we have that k ≤ m. Also note that this statement is made for
1 ≤ r ≤ k. It would be wrong to state that for 1 ≤ r ≤ m, f(ir) ≤ f(jr) as if k < m then
f(im) would be undefined.

Proof. We prove this statement by induction on r.

Basis Step: For r = 1 the statement is true, since the algorithm starts by selecting the
request i1 with minimum finish time, i.e: f(i1) ≤ f(j1)

Inductive Hypothesis: If f(ir−1) ≤ f(jr−1), then f(ir) ≤ f(jr).

Induction Step: It is know that f(ir−1) ≤ s(jr) because by induction hypothesis, f(ir−1) <
f(jr−1) and by compatibility of O, f(jr−1) < s(jr). Thus, the jr interval is in the set R
of available requests at the time when the greedy algorithm selects ir interval. Since the

6

algorithm selects the available request with smallest finish time, if f(jr) < f(ir), then the
algorithm would have selected f(jr). Therefore, we have that f(ir) ≤ f(jr). This completes
the induction step.

Theorem 2.
m = k

Proof. We prove this statement by contradiction. Assume that m > k. By the above lemma,
f(ik) ≤ f(jk). Since m > k, there must be a request (jk + 1) ∈ O. By the compatibility of
O, s(jk +1) ≥ f(jk) ≥ f(ik). Hence, the request (jk +1) is compatible with A and available
for selection (it has not been selected yet), i.e. and R is not empty. However, the greedy
algorithm stops with request (ik), and it is only supposed to stop when R is empty which is
a contradiction. Therefore, since it can not be the case that m > k, and it is already known
that k ≤ m, k = m.

1.3.3 Implementation and Runtime:

A naive implementation of this algorithm takes O(n) time in every iteration for finding
request with minimum finishing time and deleting incompatible requests. Incompatible in-
tervals can be found by traversing the remaining intervals and testing compatibility of each
by (1). Hence, the overall runtime is O(n2).

Runtime can be improved by initially sorting all requests by finishing time in O(n log n) time.
Imagine the input requests as an array of two values, starting and finishing time, similar to
a 2 × n matrix. Sort by finishing time values while dragging along the start time. Keep a
marker at current boundary of R, i.e. the first ‘non-deleted’ request in R. Once a request
ri is selected, traverse through the array starting from the current marker and increment
the marker as long as s(j) ≤ f(i), i.e. move the marker over the request incompatible with
the just added ri and consider them deleted as the next selection is a request from the
marker onwards. This reduces the runtime to a linear scan in O(n) with the sorting as an
initialization step. Hence, the overall runtime is O(n log n).

2 Interval Coloring (Interval Partitioning)

Interval Coloring is another version of the Interval Scheduling problem in which all intervals
must be scheduled while minimizing the number of resources used. In other words, the
goal is to partition the set of intervals into subsets such that each subset contains only
compatible intervals and the number of subsets is as small as possible. This problem has

7

source: https://stumash.github.io/Algorithm Notes/greedy/intervals/intervals.html

many applications, for example, to find the minimum number of classrooms to schedule all
lectures or exams (given as intervals) so that no two classes occur at the same time in the
same room. Other applications are in multi-processor systems, service windows etc.

Considering the classrooms example, n rooms can be used to schedule all intervals (each
request is in a separate subset). This is evidently a correct solution. Hence the problem is
well defined, i.e. a solution exists. However, this is a trivial solution. The problem becomes
interesting if the number of classrooms used is to be minimized, i.e. find the minimum
number of subsets. In order to see why this problem is called Interval Coloring problem,
imagine the resources as colors and each interval must be assigned a color. Similarly, it is
also called the Interval Partitioning problem as it requires that the interval set is partitioned
into subsets.

Problem 2 (Interval Coloring). Given a set of requests R, find a partition of R with mini-
mum number of compatible subsets.

8

deg(r1) = 3

deg(r2) = 2

deg(r3) = 5

deg(r4) = 2

deg(r5) = 3
depth(R) = 3

r2

r3

r5

r1

r4

r7

r6

r8

r1 r4 r5

r6r2

r8r3

r7

r6r2

r1 r4 r5

r8r7r3

Figure 6: An instance of the interval coloring problem (top) with an input set of 8 intervals. A
solution (bottom) is to partition intervals as follows: {r1, r4, r5} colored red, {r2, r6} colored
green and {r3, r7, r8} colored blue. Is it possible to use only two resources in this example?
Clearly not. There is a point in time where at maximum 3 intervals are intersecting, therefore,
at least 3 partitions are required to color all intervals. In other words, 3 is a lower bound on
the number of colors needed in this example.

2.1 Degree of an Interval and Depth of a set of Interval

Definition 3. Degree of an interval: Degree of an interval is the number of other intervals
conflicting with it.

Definition 4 (Depth of a set of intervals:). Depth of a set of intervals is the largest number
of intervals passing through a point in time.

All intervals passing through the deepest point (depth realizing point) must be scheduled
on different resources. Hence, in general, the depth d of a set R is a lower bound on the
number of resources needed to color all intervals.

9

Rp(r1) = { }
Rp(r2) = {r1}
Rp(r3) = {r1, r2}
Rp(r4) = {r1, r3}
Rp(r5) = {r3}

r2

r3

r5

r1

r4

r7

r6

r8

2.2 Greedy Interval Coloring Algorithm (known depth)

We give an algorithm to color R with d colors. Let Rp(rj) be set of intervals preceding rj
with s(i) ≤ s(j) that are conflicting with rj

Algorithm Interval Coloring (R, d)
C ← {c1, . . . , cd}
Let r1, r2, . . . , rn be R sorted by s(.)
Let Rp(rj) be set of intervals with s(i) ≤ s(j), i.e. preceding rj, which conflict with rj
for j = 1 to n do

C ′ ← C \ {colors used for any ri ∈ Rp(rj)}
if C ′ ̸= ∅ then

color rj with a cl ∈ C ′

else
Leave rj uncolored

2.2.1 Proof of Correctness

Proof. In order to prove that each request in R is assigned a non-conflicting color, we first
prove by contradiction that every interval does get a color, i.e. that the last line in the
pseudocode is never executed, and next we prove, again by contradiction that there are no
conflicting colors.

Suppose that some request rj does not get any color. Suppose there are k other intervals
before rj that overlap with rj. Each one of them must have start time before s(j) (as they
must be earlier because we are working in sorted order) and their finishing time is either
before f(j) or after f(j). All of them have the point s(j) in common, so these k+1 (including
rj) requests are conflicting, therefore, k + 1 ≤ d =⇒ k ≤ d− 1. These k requests consume
at most d − 1 colors, hence one of the colors must be unused when rj is considered and is
available for coloring rj, a contradiction to the statement that rj is not colored.

Suppose ri and rj are two overlapping intervals that are assigned the same color. Assume
without loss of generality that i ≤ j. Then, the color assigned to ri must have been excluded
from consideration for rj and can not be assigned the color assigned to ri, a contradiction
to the statement that both ri and rj are assigned the same color.

10

2.2.2 Proof of Optimality

Proof. The algorithm achieves the lower bound, i.e. atleast d colors are required, as it colors
all intervals with at most d colors and therefore produces an optimal solution for any R.

2.3 Greedy Interval Coloring Algorithm (unknown depth)

The current algorithm assumes that the depth d of R is known in advance or given as an
input. In fact, dinding the depth of R is equivalent to finding the number of colors needed
to color R. This is not very hard to see, the above proof has all the ideas to understand this
concept.

A more general algorithm that does not assume knowledge of d in advance and outputs d
along with an optimal coloring, is as follows. It allocates a new color on need basis, and
proves that exactly d colors are allocated.

Algorithm Interval Coloring with Unknown Depth (R)
d← 1
while R ≠ ∅ do

Choose ri ∈ R such that s(i) is smallest
if ri can be colored by some color c ≤ d then

Color ri with color c
else

Allocate a new color d+ 1
d← d+ 1
Color ri with color d

return d

2.3.1 Implementation and Runtime

As in interval scheduling, a naive implementation would find an unused color for each request.
The overall runtime would be O(n2) as a linear scan is required per request.

A better implementation is as follows. Similar to interval scheduling, view the input intervals
as a 2D array, each interval is a starting and finishing time. Sort intervals by starting time
s(i) as required by the algorithm. While considering rj, in order to find all the requests
conflicting with rj, which are exactly those among the intervals preceding rj whose finishing
time is higher than s(j), scan all of the preceding intervals. This again leads to O(n2)
runtime. However, realize that finding all the intervals that conflict with rj, even all the one
preceding rj, is not necessary. It is enough to only find an available color among the d colors
allocated (this is true for both algorithms above), which can be done as follows.

11

Suppose for each resource c, (1 ≤ c ≤ d) the latest finishing request that is colored with
color c is maintained in an array A of length d indexed by color id such that A[c] is the
latest finishing request that was colored with c. Each time the color c is assigned to some
interval, A[c] is updated to the finishing time of the interval currently assigned c. A color
c is available for rj if the finishing time stored at A[c] is smaller than s(j), i.e. the latest
interval using c finishes before rj and therefore does not conflict with rj. In this case, we
assign c to rj and update A[c] to f(rj).

The runtime of this approach is O(nd) time. However, since d in the worst case could be
O(n), the runtime, in the worst case, of this approach is also O(n2).

2.3.2 Improved runtime and implementation using a Min-Heap

The problem in finding a color for rj still lies in repeatedly finding an index in A where
the finishing time is smaller than s(j). A more suitable data structure can be used for
this purpose instead of an array. Recall the priority queue data structure. Store the latest
finishing times of each color in a min-heap H, where the items are the d colors and the
corresponding key is the latest finishing time. Then, while processing rj, usage of the color c
with minimum latest finishing time returned by ExtractMin(H) differs slightly depending
on whether the algorithm knows the depth d or not.

In the algorithm with known depth, the color c returned by ExtractMin(H) operation
is allocated to rj (the extracted color must be available as otherwise the lower bound d
would be violated), followed by a IncreaseKey(H, c, f(j)). In the algorithm with un-
known depth, if c has finishing time less than s(j) then it is assigned to rj followed by
IncreaseKey(H, c, f(j)), else if s(j) is smaller than the minimum finishing time of c, then
no color is currently available for rj and a new color c′ is allocated for rj followed by a
Insert(H, c′, f(j)) operation.

The overall runtime is reduced to O(n log n+ n log d).

12

	 Interval Scheduling (Activity Selection)
	Compatible and Conflicting Requests
	 Generic Greedy algorithm for Interval Scheduling
	Earliest Starting Time First
	Latest Finishing Time First
	Shortest Request First
	Least Conflicting (Most Compatible) First

	Earliest Finishing Time First
	Proof of Correctness:
	Proof of Optimality:
	Implementation and Runtime:

	 Interval Coloring (Interval Partitioning)
	Degree of an Interval and Depth of a set of Interval
	Greedy Interval Coloring Algorithm (known depth)
	Proof of Correctness
	Proof of Optimality

	Greedy Interval Coloring Algorithm (unknown depth)
	Implementation and Runtime
	 Improved runtime and implementation using a Min-Heap

