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1 Integer Multiplication

In the first lecture we discussed that we could add or multiply arbitrarily large integers by
putting all the digits of the number in an array and then add/multiply digit by digit. So
we know how to multiply two integers using the grade school algorithm but we haven’t yet
discussed if there’s a more efficient way to multiply integers. Since we’ve been using the
divide and conquer approach for different problems which had a brute-fore running time of
n2, lets see if we can use a similar idea for multiplication.

1.1 Recursive Integer Multiplication

Let x and y be two 2n digit numbers then

x =
2n−1∑
i=0

xi10
i, y =

2n−1∑
i=0

yi10
i

And we know the following axiom for Real Numbers

(a+ b)(c+ d) = ac+ ad+ bc+ bd

Using these two ideas we can come up with an apporach for dividing the multiplication
problem. In particular we can divide x and y into two n digit numbers a, b and c, d
repsectively. Where
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a =
2n−1∑
n

xi10
i−n (The left half of x)

b =
n−1∑
0

xi10
i (The right half of x)

c =
2n−1∑
n

yi10
i−n (The left half of y)

d =
n−1∑
0

yi10
i (The right half of y)

Then

xy = (10na+ b)(10nc+ d)

= 102n( ac︸︷︷︸
1 multiplication

) + 10n( ad+ bc︸ ︷︷ ︸
2 multiplications

) + bd︸︷︷︸
1 multiplication

Example : If x = 2731 and y = 1593, then

x = 27× 102 + 31 y = 15× 102 + 93

a = 27 b = 31

c = 15 d = 93

Giving us:

xy = 102(27× 15) + 102(27× 93 + 31× 15) + 31× 93

Now each of the numbers a, b, c, d have n digits. The multiplications by powers of 10 is just
a shift operation so we won’t count those. Leaving that we have four n digit numbers to
multiply and then we perform three addition operations. So our recurrence relation looks
like
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T1(n) =

{
1 n = 1

4T1

(
n
2

)
+ 3n n > 1

We will later see, when we solve this recurrence that we get a running time that scales
quadratically with n.

1.2 Karatsuba Algorithm for Integer Multiplication

But we already have an n2 algorithm which is much simpler than this. So it would seem that
our approach for dividing the problem doesn’t really help. However, the four multiplications
we had to perform could be reduced to three by using

bc+ ad = (a+ b)(c+ d)− ac− bd

Taking from our previous example, we can see that this is true:

31× 15 + 27× 93 = (27 + 31)(15 + 93)− 27× 15− 31× 93

465 + 2511 = (58)(108)− 405− 2883

2976 = 2976

The Karatsuba algorithm for multiplying two integers uses this improvement. Reducing
the number of multiplications by just 1 doesn’t seem like much, but as we’ll see this gives
us a significantly better running time when this is done at every step of the recursion. Our
new recurrence relation is

T2(n) =

{
1 n = 1

3T2

(
n
2

)
+ 3n n > 1

We will see that this comes out to be about n1.58 which is a big improvement over the n2

algorithm. As an illustration, lets take n = 1000: For the brute force n2 algorithm, we get:

10002 = 1000000

Whereas for the Karatsuba’s n1.58 algorithm, we get:

10001.58 = 54954

Comparing these values shows us that Karatsuba reduces the execution time to:

54954

1000000
× 100 = 5.94%

4



of the brute force execution

Note : Since the 3 in 3n is just a constant, we will ignore it and just use n from now on.
This simplifies our calculations and is asymptotically equal as we will see below (the master
theorem). The recurrence for this algorithm that we will refer to from now on would be

T2(n) =

{
1 n = 1

3T2

(
n
2

)
+ n n > 1

2 RankA(x)

Problem : Given an array A and an element x (which may or may not belong to A), we
want to find the number of elements in A that are ”less than” x. This is called the Rank
of x in A and is written as RankA(x)

Example : Let A = 5 4 6 9 2 7 5 8

Then RankA(5) = 2, RankA(3) = 1, RankA(1) = 0. Notice the rank of the minimum
element of A, the maximum element of A and an integer larger than the maximum of A.

2.1 Computing the Rank

One way to compute the rank of an element is just by a simple linear scan of the array A.
This is a simple algorithm, taking n steps in the worst-case scenario.

2.2 Computing Rank in a sorted array

Suppose the A is sorted, then can we do any better than n steps ? Well we have already
studied the binary search algorithm for finding an element in a sorted array. Binary search
takes about log n steps. We can use a slightly modified version of it to find the rank of an
element. Recall what binary search returns when the search key x is not in the array.

2.3 Computing Rank of two elements at once

Suppose now that A is sorted and instead of one element x, you’re given two elements x and
y and you have to compute the rank of both of these elements. Without loss of generality,
we can assume x ≤ y (if x > y just swap the two). Now we know we can compute the
rank of one element using binary search. For two elements we can just repeat the same
process for the second element. So the total steps taken would be log n + log n = 2 log n.
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Another thing we could do is that suppose RankA(x) turns out to be i. Then instead of
using binary search on the whole array, we can use binary search on B = A[i . . . n]. Then
RankA(y) = RankB(y) +RankA(x). Concretely, we can do the following.

Algorithm 1 : Finding Rank of Two Elements

rankXA← getRank(x,A)
rankY B ← getRank(y, {A[rankXA] · · ·A[n]})
return {rankXA, rankYB + rankXA}

How much improvement do we get by using this algorithm as compared to just using binary
search on A twice? Well let’s see, any improvement that we do get is because now we’re
searching over a smaller array. The size of that array is n − RankA(x). So what’s the
largest possible value for n−RankA(x) ? that would be our worst case. The largest value
is when RankA(x) = 0. So in that case the size of the new array would be n and it would
take us log n steps to compute RankA(y) and a total of log n+log n steps to compute both
the ranks. So in the worst case there is no improvement by this algorithm.

2.4 Computing Rank of n elements at once

Okay so now, instead of two elements x and y we can generalize the problem. Suppose
we’re given two sorted arrays, A and B. Our task is to find the rank in A of all elements
of B. That is we have to compute {RankA(x)|x ∈ B}. We solve this problem by extending
our algorithm for the 2 element case. The algorithm is given below.

Algorithm 2 : Computing {RankA(x)|x ∈ B} using Binary Search

for i = 1 to n do
if i == 1 then

rankB[i]← getRank(B[i], A)
else

rankB[i]← (rankB[i− 1] + getRank(B[i], {A[rankB[i− 1]] · · ·A[n]}))

Let’s analyze the running time for this algorithm. For two elements x and y we calculated
that the running time should be 2 log(n). When we extend it to n elements, again at
each turn, in the worst case, the size of the remaining array that we have to look at is not
reduced at all. So the total running time would be log n+log n+ logn+ . . .+ logn = n log n.
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Taking a step Back : Can we do any better than this ? Let’s consider again, the linear
scan approach that was discussed in the beginning. As it turns out, in one linear pass
through the array A we can determine the rank of all elements of B. The algorithm for
that is quite simple, and is described below.

Algorithm 3 : Computing {RankA(x)|x ∈ B} using Linear Search

r ← 0
for i = 1 to n do

if A[i] > B[j] then
rankB[j]← r
j ← j + 1

else
r ← r + 1

This concludes our discussion on rank. Now we move on to a seemingly different problem.
That of “merging” two sorted arrays. It is quite easy to see that this algorithm takes 2n
comparisons.

3 Merging two arrays

Problem : The merge problem is as follow. We’re given two arrays A and B, each of
size n. Both of these arrays are in sorted order. We have to make another sorted array C
of size 2n, that contains all the elements of A and B.

Example : Let A = 1 3 4 7 , B = 2 5 6 8

Then C = 1 2 3 4 5 6 7 8

3.1 Merging by finding ranks

One way to do this is to just combine the two arrays into one big array C and then just sort
C. Since C is of size 2n this would take about 2n log(2n) comparisons, if we use insertion
sort with binary search. Using selection sort or bubble sort it would take about 2n(2n−1)/2
comparisons. But since the two arrays A and B are sorted perhaps we can do better. If
you really think about this problem is exactly equivalent to determining the rank of all
elements of B in A (or vice versa). If we know the ranks we know in which position the
elements of A and B would go in the combined array. Like in the example described above
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we know

RankA(2) = 1, RankA(5) = 3, RankA(6) = 3, RankA(8) = 4

So we know that 2 would come after one element of A has been inserted (which one?). 5
would come after three elements of A have been inserted into C and so on. And we know
that finding the ranks of all elements of B in A takes just n steps. So we should be able to
solve this problem in about n steps. Typically though, the way the solution is implemented
doesn’t require explicitly finding the ranks. We just maintain two running pointers for A
and B, compare the elements at those indices, insert the smaller one into C and increment
the corresponding pointer. The exact algorithm is given below

Algorithm 4 : Merging A and B
p← 1
q ← 1
for i = 1 to 2n do

if (p > n or A[p] > B[q]) then
C[i]← B[q]
q ← q + 1

else
C[i]← A[p]
p← p+ 1

4 Merge Sort

The above strategy allows us to define another sorting algorithm, called the Merge Sort.
Merge Sort works as follows. Given an array, A of size n we divide the array into two halves
A[1 . . . n/2 and A[n/2 + 1 . . . n], recursively sort the two halves and then merge the sorted
halves using the merge algorithm we just discussed. The pseudocode is given below.

Algorithm 5 : Merge Sort

function MergeSort(A)
if size(A) = 1 then

return A
else

L←MergeSort(A[1 . . . size(A)/2])
L←MergeSort(A[size(A)/2 + 1 · · · size(A)])
return Merge(L,R)
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4.1 Runtime of MergeSort

To analyze the running of this algorithm we can set up a recurrence relation. We know
that to sort an array of size m we have to sort two arrays of size m/2 and then merge the
two. We know that the time taken to merge two arrays of size m/2 is m. Denote by T (m)
the number of comparisons MergeSort takes to sort an array of m elements. It is clear from
the algorithm and preceding discussion that

T (m) = 2T
(m
2

)
+m (1)

We want to find a closed form solution to this recurrence (rather than this recursive/inductive
definition). One way to find such a closed form solution is to just extend the recursive re-
lation. Suppose we want to find what is T (n), then repeatedly applying (1) we get

T (n) = 2T
(n
2

)
+ n

= 2
(
2T
(n
4

)
+

n

2

)
+ n

= 2
(
2
(
2T
(n
8

)
+

n

4

))
+ n+ n

= 2
(
2
(
2
(
2T
( n

16

)
+

n

8

)))
+ n+ n+ n

In general the kth line of the above sequence of equation is

T (n) = 2k · T
( n

2k

)
+

k times︷ ︸︸ ︷
n+ n+ . . .+ n

As we know from the algorithm that T (1) = 1 and it is easy to see that the maximum
value of k is log n (assuming n is a power of 2 to rid ourselves from dealing with floors and
ceilings), we get that the last equation will be

T (n) = 2logn · T
( n

2logn

)
+

logn times︷ ︸︸ ︷
n+ n+ . . .+ n

= n · T
(n
n

)
+

logn times︷ ︸︸ ︷
n+ n+ . . .+ n

= n · 1 + n log n

= n log n+ n

We will now discuss recurrence relations, and ways to solve them.
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5 Recurrence

The following two paragraphs are mostly copy pasted from https://courses.engr.illinois.

edu/cs573/fa2010/notes/99-recurrences.pdf

A recurrence is a recursive description of a function, or in other words, a description of a
function in terms of itself. Like all recursive structures, a recurrence consists of one or more
base cases and one or more recursive cases. Each of these cases is an equation or inequality,
with some function value f(n) on the left side. The base cases give explicit values for a
(typically finite, typically small) subset of the possible values of n. The recursive cases
relate the function value f(n) to function value f(k) for one or more integers k < n. For
example, the following recurrence describes the identity function f(n) = n:

f(n) =

{
0 if n = 0

f(n− 1) + 1 otherwise

Recurrences arise naturally in the analysis of algorithms, especially in divide and conquer
algorithms. In many cases, we can express the running time of an algorithm as a recurrence,
where the recursive cases of the recurrence correspond exactly to the recursive cases of the
algorithm. Recurrences are also useful tools for solving counting problems — How many
objects of a particular kind exist?
By itself, a recurrence is not a satisfying description of the running time of an algorithm.
Instead we would like a closed-form solution to the recurrence; this is a non-recursive
description of a function that satisfies the recurrence. We will disscuss now, how to solve
some types of these recurrence relations.

5.1 Solving Recurrence Relations

One way to think about what’s going on in a recurrence relation is to visualize it as a tree
diagram. We will consider the Mergesort algorithm and Karatsuba algorithm and see how
we can visualize them and see what’s happening. This would hopefully provide us with
some insight as to how much work our algorithm is doing. We represent each instance of a
called function as a node in the tree and calls to a function represent edges. This allows us
to figure out how many function calls are made and helps us figure out the amount of work
that’s being done. Below is a tree diagram for the merge sort algorithm. As a reminder,
mergesort splits the array to be sorted into two halves, sorts each half independently and
then merges the two halves outside of the recursion. For merging it takes time equal to
length of the merged array. For a more detailed description, refer to notes on mergesort.

In the beginning there is a call to mergesort with a problem of size n. That functions then
calls two other instances of mergesort with problem sizes of n

2
, each of which make two
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n

n
2

n
2

n
4

n
4

n
4

n
4

n
2 +

n
2

4n
4 = n

8n
8 = n

No of comparisons

calls to mergesort with problem sizes of n
4
and so on. We know that the calls would stop

when the the size of the array is 1 (or two.. that’s just an implementation issue). So we
know there are about log n levels of the tree. Another thing we can see from this diagram
is that at every level n comparisons are made for merging. That means the total time for
this algorithm is n log n.

5.2 Analysis Of the Karatsuba Algorithm

Let’s now see how the recursion tree for the Karatsuba Algorithm looks like. In the Karat-
suba algorithm at each step the problem is divided into 3 subproblems of size n

2
. So it’s

recursion tree looks as follows

n
4

n

3n
2

9n
4

n

n
2

n
2

n
2

n
4

n
4

n
4

n
4

n
4

n
4

n
4

n
4

The number of levels of this tree would be the same as in mergesort (i.e log n) since at each
level the problem size is halved, just like in mergesort. However the number of problems
grows faster in Karatsuba. And as a result we can see in the diagram that the amount of
work being done at each level is not the same. The amount of work at the top (0th) level is
n, at the first level 1.5n and 2.25n at the second level. So it’s not immediately clear what
the total running time of the algorithm would be. But we can sort of see a pattern. At
each level the problem size gets split into 2 and the number of problems grows by a factor
of 3. So at level i the number of problems is 3i and the size of each problem is n

2i
. So the

total work at each level is 3i×n
2i

.
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We can now figure out the total running time that this algorithm would take by summing
up the running time over all levels.

T2(n) =

logn∑
i=0

3i × n

2i
= n

logn∑
i=0

(
3

2

)i

= n

(
1− 3

2

logn+1

1− 3
2

)

∈ O

(
n×

(
3

2

)log2 n
)
∈ O

(
n×

(
3log2 n

n

))
∈ O

(
3

log3 n
log3 2

)
∈ O

(
n

1
log3 2

)
∈ O

(
n

1
0.6309

)
∈ O

(
n1.58

)
5.3 Analysis Of the Naive Divide & Conquer Multiplication Al-

gorithm

We can similarly imagine a tree for this algorithm. At each step the number of problems
would be multiplied by 4 and the problem size would be halved. So at each level the amount
of work would be 4i×n

2i
. And the total work would be

T1(n) =

logn∑
i=0

4i × n

2i
= n

logn∑
i=0

2i = n× 2log2n+1

∈ O
(
n× 2log2n

)
∈ O (n× n) ∈ O

(
n2
)

So we see that the running time in this case turns out to be n2 as was mentioned previously.

5.4 Substitution method for Solving Recurrences

While we have seen that the recursion tree method works pretty well for solving recurrences,
we would like to have a method that is simpler and does not require much drawing. Such
a method is the substitution method, which simply requires to substitute the value of the
function for smaller values from the recurrence and continue until we see a pattern and
can’t manage it. Let us use the recurrence relation for merge sort, which is:

T (n) = 2T (
n

2
) + n
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T (n) = 2T (
n

2
) + n = 2(2T (

n

4
) +

n

2
) + n = 2 ∗ 2 ∗ (2T (n

8
) +

n

4
) + n = 2 ∗ 2 ∗ 2(T (n

8
) + n+ n+ n

...
...

= 2 ∗ 2 ∗ 2... ∗ 2︸ ︷︷ ︸
k

∗T ( n
2k

) + n+ n+ ....+ n︸ ︷︷ ︸
k

...
...

= 2 ∗ 2 ∗ 2... ∗ 2︸ ︷︷ ︸
log n

∗T ( n

2logn
) + n+ n+ ....+ n︸ ︷︷ ︸

log n

= 2logn ∗ 1 + n log n

= n log n+ n

Hence we get O(n log n) for the merge sort algorithm.

5.4.1 Using the substitution method for solving the naive Divide and Conquer
multiplication problem

As stated previously, the naive divide and conquer algorithm for multiplication has the
recurrence relation

T1(n) = 4T1(
n

2
) + n
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T1(n) = 4T1(
n

2
) + n = 4(4T1(

n

4
) +

n

2
) + n

= 4(4(4T1(
n

8
) +

n

4
) +

n

2
) + n = 4 ∗ 4 ∗ 4T1(

n

8
) + 4 ∗ 4 ∗ n

4
+ 4 ∗ n

2
+ n

...
...

= 4 ∗ 4 ∗ 4... ∗ 4︸ ︷︷ ︸
k

∗T1(
n

2k
) +

k∑
i=0

(4i ∗ n

2i
)

...
...

= 4 ∗ 4 ∗ 4... ∗ 4︸ ︷︷ ︸
logn

∗T1(
n

2logn
) +

logn∑
i=0

2in = 4logn ∗ 1 + n(2logn+1)

= 22 logn + n ∗ n = n2 + n2 = 2n2

Hence we get O(n2) runtime for the naive divide and conquer multiplication.
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5.4.2 Using substitution to analyze Karatsuba Algorithm

Finally, we look into the Karatsuba algorithm and determine its runtime via the substitution
method. So we have:

T2(n) = 3T2(
n

2
) + n = 3(3T2(

n

4
) +

n

2
) + n = 3(3(3T2(

n

8
) +

n

4
) +

n

2
) + n

...
...

= 3 ∗ 3 ∗ 3... ∗ 3︸ ︷︷ ︸
k

T2(
n

2k
) +

k∑
i=0

(3i ∗ n

2i
)

...
...

= 3 ∗ 3 ∗ 3... ∗ 3︸ ︷︷ ︸
logn

T2(
n

2logn
) +

logn∑
i=0

(3i ∗ n

2i
) = 3logn ∗ 1 + n ∗

logn∑
i=0

(
3i

2i
)

= 3logn + n ∗ (
1− (3

2
)logn

1− (3
2
)

) = 3logn + n ∗ (
1− (3

logn

2logn )

−(1
2
)

)

= 3logn + n ∗ 2(3
log2 n

n
) = 3(3

log3 n
log3 2 ) = 3(3log3 n)

1
log3 2 = 3n

1
log3 2 = 3n1.58

Hence, we get O(n1.58) as the runtime for the Karasuba algorithm.

5.5 Master Theorem

We’ve had to analyze the running times of a bunch of divide and conquer algorithms over
the past 2,3 classes which had pretty similar recurrence relations. Setting up a recurrence
relation, and then figuring out how much work is being done at each level of the recursion
tree and then summing up over all levels is a pain and we would like to have some general
results that can be used to directly get the running time of a divide and conquer algorithm.
As it turns out, most divide and conquer algorithms tend to have the following type of
recurrence relation.

T (n) = aT
(n
b

)
+O(nd)

Where a corresponds to the number of subproblems, n/b corresponds to the size of each
subproblem and O(nd) is the work performed in the conquer and combine step. There’s a
theorem called the Master theorem which gives us the following results for these types of
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recurrence relations

T (n) =


O(nd) d > logb(a)

O(nd log(n)) d = logb(a)

O(nlogb(a)) d < logb(a)

5.5.1 Analyzing running times using the Master Theorem

Let’s now apply to master theorem to the various recurrence relations we’ve discussed uptil
now. For the merge sort algorithm a = 2, b = 2 and d = 1. So logb(a) = log2(2) = 1 which
is the same as d. So case 2 applies here and we get a running time of n log n, the same as
when we computed using the recursion tree.

For the naive divide and conquer multiplication algorithm we have a = 4, b = 2 and
d = 1. Which means logb(a) = log2(4) = 2 which is greater than d. So case 3 applies and
we get a running time of

nlogb(a) = nlog2(4) = n2

For Karatasuba too, case 3 applies. You can put in the relevant values and see that
the running time comes out to be about n1.58 same as we calculated earlier.

6 Divide and Conquer Algorithm Design Paradigm

The merge sort algorithm is the canonical example given for the Divide and Conquer design
paradigm. The divide and conquer approach requires recursively breaking a problem into
smaller subproblems (the divide part) until they become easy enough to be solved directly.
In merge sort, for example we keep dividing the array into two parts until the size of the
array is 1 and we know how we can sort an array with just one element (It’s already sorted).
The next step is to somehow combine the solutions of the smaller subproblems to obtain
the solution of the original problem (the conquer part). This step is usually tricky. In
merge sort we used the “merge” algorithm to sort the larger array from two sorted halves.

Next, we will discuss two more Divide and Conquer algorithms. The first is the problem
of counting inversions, as follows. The second is the problem of finding closest pair of
points among a set of points in 2-dimensional Euclidean space. We present the brute-force
approach to solve this problem and improve it using the divide and conquer approach.
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source: Khan Academy

7 Counting Inversions

Problem : Given an array A an inversion is defined as a pair i, j such that i < j ∧ A[i] >
A[j]. We want to find how many such pairs are in A.

Crossing Points (black dots) represent inversions

2 4 5 5 6 7 8 9

5 4 6 9 2 7 5 8

Sorted Array

Input Array

Example : Let A = 5 4 6 9 2 7 5 8 . Then the inversions for this array
are

{(1, 2), (1, 5), (2, 5), (3, 5), (3, 7), (4, 5), (4, 6), (4, 7), (4, 8), (6, 7)}

Solution : One way to solve is problem is to simply check all pairs i, j and see how many
of them are inversions. There are

(
n
2

)
pairs so that would take about n2/2 steps. That

algorithm would work as follows
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Algorithm 6 : Counting Inversions Using Brute Force
count← 0
for i = 1 to n do

for j = i+ 1 to n do
if A[i]A[j] then

count← count+ 1

As computer scientists, however, we always want to come with better, more efficient algo-
rithms. But why should we think that a better solution should exist for this problem? Well
one reason is that this problem is somewhat related to sorting an array (Infact the number
of inversions is used as a measure for the sorted-ness of an array). When we’re sorting an
array we’re basically removing all the inversions. And we know we can sort an array in
n log(n) steps. The algorithm for that was discussed in the last class. So it makes sense
that there should be a similar algorithm that can count inversions in about the same time
too. We used the divide and conquer approach to obtain a better running time for sorting.
So let’s try to do something similar for counting inversions too. How should be break this
problem?

If we divide an array into two halves, then we can split the inversions into 3 types: Left-
Left, Right-Right inversions and Left-Right inversions. For example, consider the following
array A:

72 3 8 10 9 12 18 15 255 4

Divide the array into two.

79 12 18 15 252 3 8 105 4

Recursively count inversions in each half.

79 12 18 15 252 3 8 105 4

︸ ︷︷ ︸
Left−Left =8−5, 8−4, 5−4

︸ ︷︷ ︸
Right−Right : 9−7, 12−7, 18−15

Count inversions where ai and aj are in different halves and return total inversions count.

2 3 8 105 4 79 12 18 15 25

Left-Right Inversions
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We’ll refer to the left and right halves of the array as L and R. Then Left-Left inversions
are those which only involve pairs from L. Similarly the Right-Right inversions are the
inversions that involve pairs from only R. Left-Right inversions are pairs that involve one
element from L and one element from R. The Left-Left and Right-Right inversions will be
found by recursively dividing the array into even smaller parts. The problem is finding the
Left-Right inversions. If we can find the Left-Right inversions in n steps then we can solve
the problem in n log(n) steps. The algorithm would have the same recurrence relation as
the merge sort algorithm and hence the same running time.

The problem of finding the left-right inversions is equivalent to finding the ranks in R of
all the elements of L. We know that if the two arrays R and L are sorted then we can find
the ranks in n steps. So while counting the inversions in the left and right halves of the
array we’ll do some extra work and also sort them. The idea is that even though we do the
some extra work in sorting, the overall time will be reduced because now we can find the
inversions much faster. Let’s see how that algorithm would work.

Algorithm 7 : Counting Inversions using Divide and Conquer

function CountInversions(A)
if Size(A) = 1 then return (A, 0)

L← A[1, 2, · · · , n/2]
R← A[n+ 1, n+ 2, · · · , n]
(sortedL, invl,l)← CountInversions(L)
(sortedR, invr,r)← CountInversions(R)
invl,r ← sum(FindRanks(L,R)) ▷ takes n steps
return (Merge(L,R), invl,l + invr,r + invl,r) ▷ merge takes n steps

So our recurrence relation turns out to be

T (n) = 2T
(n
2

)
+ 2n

And solving this we get
T (n) = 2n log(n)

Which is a huge improvement over the n2 brute force algorithm.

7.1 Collaborative Filtering

One of the areas in which the problem of counting inversions comes up is in recommender
systems. A recommender system tries to predict the ’rating’ a user gives to a particular

19



item. Like how YouTube tries to recommend you videos based on your viewing history, or
how IMDb recommends movies.

?
Items

S
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rch

R
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m
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n
s

Products, news, friends,

websites,movies, courses

One technique used in recommender systems is that of “collaborative filtering”. Collabora-
tive filtering is a method of making automatic predictions (filtering) about the interests of
a user by collecting preferences or taste information from many users (collaborating). The
underlying assumption of the collaborative filtering approach is that if a person A has the
same opinion as a person B on an issue, A is more likely to have B’s opinion on a different
issue x than to have the opinion on x of a person chosen randomly” (Wikipedia).

highly similar

(rating based)

low similarity

likes

likes

Collaborative Filtering

u1

u3

u2
pj

will probably like

lik
es
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The way this is done is as follows. Based on your activity on the website (How many times
you view a particular item, the review you’ve given some item, etc.) the website builds a
list containing your relative preference to various items.

Table 1: User 1
itemA itemB itemC itemD itemE

1 2 3 4 5

It then builds a similar list for other users. It then finds the users most similar to you
by counting inversions between your list and theirs. Once the website has a list of similar
users it can then suggest items to you based on what these similar people like.

Table 2: User 2
itemA itemB itemC itemD itemE

3 1 2 4 5

8 Closest Pair

The second problem is as follows: Given an array of points in the plane, find the pair of
points which is closest with respect to Euclidean distance.

8.1 Naive Approach for Closest Pair

Notice that if points are in 1−D, (an array of real numbers), with sorting it is easy to find
the closest pair. In 2 −D, a simple way to solve the problem would be to compare every
point with every other point and find minimum distant pair. This takes O(n2) time.

8.2 Divide and conquer approach for Closest Pair

Input: 2−D array P of points.

Step 1. Sort the array P with respect to x−coordinates to get 2 − D array Px and sort
with respect to y−coordinates to get 2−D array Py.

Divide Part:
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Step 2. Consider the mid point (median) m of array Px. Lets the set of points on the left
side of m be S1 and on right of m be S2. We make array of points in S1 and call it P1x

which is in fact left sub-array of Px and P2x with points in S2. Note that P1x and P2x are
sorted in x−direction. We also compute arrays P1y and P2y, which are essentially points
in S1 and S2 respectively but sorted in y−direction. We compute the arrays P1y and P2y in
the following way.

1. Pick first point in Py and compare its x−coordinate with m.

2. If x ≤ m, insert the point in P1y, otherwise insert in P2y

3. continue inserting elements in both arrays.

Note that points are inserted in sorted order in both arrays since Py is sorted. Analysis
It takes O(n) steps to make the arrays P1y, P2y, P1x and P2x.

20
12

Conquer Part:

Step 3. Recursively find closest pairs in S1 with input data P1x, P1,y, and S2 with input
data P2x, P2y, with shortest distance δ1 and δ2 respectively.

12

209

22



Consider smaller distance of both δ1 and δ2. Let δ = min{δ1, δ2}. Only thing left to
consider in the problem is, what if closest pair has one point in S1 and other in S2?

Combine Part:

Step 4. Consider N1 ⊆ S1 and N2 ⊆ S2 such that points in N1 and N2 are in δ distance
strip of m. Sort N1 ∪ N2 with respect to Y−coordinates of points. We compute and sort
points in 2− δ strip of m in the following way.

1. Consider first point in Py array and check if its x−coordinate is less than δ distance
from m.

2. if x−distance from m is less than δ then put this point in array N = N1 ∪N2.

3. check this for every point in Py.

Analysis This step takes O(n) time.

δ1
δ2

δδ δ =min(δ1, δ2)

S2

S3

S4

S5

S6

S7

S8

S9

S10

S1

Note that if the closest pair has one point in S1 and one in S2, then that pair must be in
N .

For each point x of N , there can be atmost 7 points in N such that distance of x with those
7 points is less than δ. Since if x has distance less than δ with some point, it will be in
one of its neighboring squares, shown in diagram below. And there can not be more than
one point in any of the small squares otherwise it will contradict the minimality of δ. We
are not considering squares below the point x because these points are sorted and points
below have been processed (assuming that traversing is in ascending order).
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δ/2

δ/2

δ

i

j

S3 S2

S4

S6

S9

S11

Sy︷ ︸︸ ︷

δ

Step 5. Compute the distance of each point in N to next 7 points in the array and compare
it with δ. If distance is smaller than δ then update the closest pair and continue.

Analysis This step takes O(n) time to execute since each point is being compared to con-
stant number of other points.

8.3 Runtime Analysis

In each divide part, we get two half size problems and combining takes O(n) time. So run
time for the whole algorithm is

T (n) =

{
1 if n < 3

2T (n
2
) +O(n) if n ≥ 3

Solving this recursively, T (n) = O(nlogn)

24


	Integer Multiplication
	Recursive Integer Multiplication
	Karatsuba Algorithm for Integer Multiplication

	RankA(x)
	Computing the Rank
	Computing Rank in a sorted array
	Computing Rank of two elements at once
	Computing Rank of n elements at once

	Merging two arrays
	Merging by finding ranks

	Merge Sort
	Runtime of MergeSort 

	Recurrence
	Solving Recurrence Relations
	Analysis Of the Karatsuba Algorithm
	Analysis Of the Naive Divide & Conquer Multiplication Algorithm
	Substitution method for Solving Recurrences
	Using the substitution method for solving the naive Divide and Conquer multiplication problem
	Using substitution to analyze Karatsuba Algorithm

	Master Theorem
	Analyzing running times using the Master Theorem


	Divide and Conquer Algorithm Design Paradigm
	Counting Inversions
	Collaborative Filtering

	Closest Pair
	Naive Approach for Closest Pair
	Divide and conquer approach for Closest Pair
	Runtime Analysis


