
Algorithms

Lecture : Algorithmic Thinking and Arithmetic Problems
Imdad ullah Khan

Contents

1 Parity check of an integer 1
1.1 Parity Check: Formulation for large input 1
1.2 Parity Check: A Different Formulation . 2

2 Algorithmic thinking and Terminology 2

3 Algorithms Design Questions 3
3.1 What is the problem? . 3
3.2 Is the algorithm correct? . 4
3.3 How much time does it take? . 4

3.3.1 Runtime: . 5
3.4 Can we improve the algorithm? . 5

4 Analysis of Algorithms 5
4.1 Running Time . 6
4.2 Elementary operations . 6
4.3 Runtime as a function of input size . 6
4.4 Best/Worst/Average Case . 7
4.5 Growth of runtime as size of input . 7

5 Arithmetic problems 7
5.1 Addition of two long integers . 7

Correctness of Algorithm for adding two integers given as arrays . . . 8
Runtimeof Algorithm for adding two integers given as arrays 8

5.2 Multiplication of two long integers . 9
Runtime of grade-school multiplication algorithm 10

5.2.1 A reformulation of the multiplication problem 11
5.3 Exponentiation of an integer to a power . 11

5.3.1 Exponentiation by iterative multiplication 11
5.3.2 Exponentiation by recursive multiplication 12

Runtime of recursive exponentiation 12
5.3.3 Exponentiation by repeated squaring 13

Runtime of repeated squaring . 13
5.4 Dot Product . 14

1

Runtime of dot-prod . 15
5.5 Matrix-Vector Multiplication . 16
5.6 Matrix Multiplication via dot product . 17
5.7 Matrix-Matrix Multiplication via Matrix-Vector Product 18

1 Parity check of an integer

We are going to discuss a very easy problem that should be trivial for everyone to solve. This
will help us develop a thinking style of a computer scientist and establish a lot of terminology.

Input: An integer A
Output: True if A is even, else False

Solution: Here is a simple algorithm to solve this problem.

Algorithm 1 Parity-Test-with-mod
if A mod 2 = 0 then

return true

The above solution is written in pseudocode (more on it later). This algorithm solves the
problem, however following are some issues with it.

� It only works if A is given in an int

� What if A doesn’t fit an int and A’s digits are given in an array?

� What if A is given in binary/unary/. . . ?

Note that these issues are in addition to usual checks to see if it is a valid input, i.e. to check
that A is not a real number, a string, or an image, etc.

1.1 Parity Check: Formulation for large input

Suppose the integer is very large, (n-digits long for some n > the computer word length) so
it does not fit any variable. Say the input integer is given as an array A, where each element
is a digit of A (least significant digit at location 1 of the array). For example

A =
7 6 5 4 3 2 1 0

5 4 6 9 2 7 5 8

In this case, the following algorithm solves the problem.

Solution:

2

By definition of even integers, we need to check if A[0] mod 2 = 0. If so then output A is
even.

Algorithm 2 Parity-Test-with-mod

Input: A - digits array
Output: true if A is even, otherwise false
if A[0] mod 2 = 0 then

return true
else

return false

1.2 Parity Check: A Different Formulation

What if the mod operator is not available in the programming language, then we can man-
ually check if the last digit is an even digit, i.e. check if A[0] ∈ {0, 2, 4, 6, 8}.

Algorithm 3 Parity-Test-with-no-mod

Input: A - digits array
Output: true if A is even, otherwise false
if A[0] = 0 then return true
else if A[0] = 2 then return true
else if A[0] = 4 then return true
else if A[0] = 6 then return true
else if A[0] = 8 then return true
else

return false

2 Algorithmic thinking and Terminology

We saw an algorithm for a very basic problem, next we discuss how a computer scientist
ought to think about algorithms and what question one needs to ask about algorithms. We
will then discuss some basic arithmetic problems and algorithms for them without elabo-
rating explicitly about these questions, but they will be answered. Every students should
be well versed with these algorithms, we discuss them to develop relevant vocabulary and
terminology, such as elementary operations, runtime, correctness. We will also establish the
pseudocode notation that we will use throughout this course.

An algorithm is defined as a procedure designed to solve a computational problem. When
designing an algorithm, the designer needs to keep in mind some important features which
are to be used when formulating an algorithm:

3

� Input: This is the data that is passed to the algorithm, and may be in different
forms. For instance, it could be a simple number, or a list of numbers. Other examples
include matrices, strings, graphs, images, videos, and many more. The format of input
is an important factor in designing algorithms, since processing it can involve extensive
computations.

� Size of Input: The size of input is a major factor in determining the effectiveness of
an algorithm. Algorithms which may be efficient for small sizes of inputs may not do
the same for large sizes.

� Output: This is the final result that the algorithm outputs. It is imperative that the
result is in a form that can be interpreted in terms of the problem which is to be solved
by the algorithm. For instance, it makes no sense to output ‘Yes’ or ‘No’ to a problem
which asked to find the maximum number out of an array of numbers.

� Pseudocode: This is the language in which an algorithm is described. Note that
when we say pseudocode, we mean to write down the steps of the algorithm using
almost plain English in a manner that is understandable to a general user. Our focus
will be the solution to the problem, without going into implementation details and
technicalities of a programming language. Given our background, we will be using
structure conventions of C/C + +/Java. We will see many examples of this later on
in the notes.

3 Algorithms Design Questions

With these features in mind, an algorithm designer seeks to answer the following questions
regarding any algorithm:

3.1 What is the problem?

� What is input/output?, what is the ”format”?

� What are the “boundary cases”, “easy cases”, “bruteforce solution”?

� What are the available “tools”?

We saw in the parity test problem (when the input was assumed to be an integer that fits
the word size), how an ill-formulated problem (ambiguous requirement specification) could
cause problem. Similarly, when we had to consider whether or not mod is available in our
toolbox.

As an algorithm designer, you should never jump to solution and must spend considerable
amount time on formulating the problem, rephrasing it over and over, going over some special
cases.

4

Formulating the problem with precise notation and definitions often yield a good ideas
towards a solution. e.g. both the above algorithms just use definitions of even numbers

This is implementing the definition algorithm design paradigm, one can also call it a brute-
force solution, though this term is often used for search problem.

One way that I find very useful in designing algorithms to not look for a smart solution right
away. I instead ask, what is the dumbest/obvious/laziest way to solve the problem? What
are the easiest cases? and what are the hardest cases? where the hardness come from when
going from easy cases to hard cases?

3.2 Is the algorithm correct?

� Does it solve the problem? Does it do what it is supposed to do?

� Does it work in every case? Does it always “produce” the correct output? (also defined
as the correctness of the algorithm)

� Does the algorithm halts on every input (is there a possibility that the algorithm has
an infinite loop, in which case technically it shouldn’t be called an algorithm though).
Must consider “all legal inputs”

The correctness of the three algorithms we discussed for the parity-test problem follows from
definition of even/odd and/or mod, depending on how we formulate the problem

3.3 How much time does it take?

� Actual clock-time depends on the actual input, architecture, compiler etc.

� What is the size of input?

� What are elementary operations? How many elementary operations of each type does
it perform?

� How the number of operation depends on the “size” of input

� The answer usually is a function mapping the size of input to number of operations,
in the worst case.

� We discuss it in more detail in the following section

3.3.1 Runtime:

of the algorithms we discuused so far. The first algorithm performs one mod operation over
an integer and one comparison (with 0). The second algorithm performs one mod operation
over a single-digit integer (recall size of the input) and one comparison (with 0) The third
algorithm performs a certain number of comparisons of single digit integers. The actual
number of comparison depends on the input. If A is even and its last digit is 0, then it

5

takes only one comparison, if A[0] = 2, then we first compare A[0] with 0 and then with 2,
hence there are two comparisons. Similarly if A is odd or A[0] = 8, then it performs five
comparisons.

This gives rise to the concept of best-case, worst-case analysis. While the best-case analysis
gives us an optimistic view of the efficiency of an algorithm, common sense dictates that we
should take a pessimistic view of efficiency, since this allows us to ensure that we can do no
worse than worst-case, hence our focus will be on worst-case analysis.

Note that the runtimes of these algorithms do not depend on the input A, as it should not,
as discussed above we consider the worst case only. But they do not even depend on the size
of the input, we call this constant runtime, that is it stays constant if we increase the size
of input, say we double the number of digits the algorithm still in the worst case performs 5
comparisons.

3.4 Can we improve the algorithm?

� Can we tweak the given algorithm to save some operations?

� Can we come up with another algorithm to solve the same problem?

� Computer scientists should never be satisfied unless

� May be we can’t do better than something called the lower bound on the problem.

Since all three algorithms perform only a constant number of operation and we are usually
concerned how can we improve the runtime as the input size grows, in this case we do not
really worry about improving it.

4 Analysis of Algorithms

Analysis of algorithms is the theoretical study of performance and resource utilization of
algorithms. We typically consider the efficiency/performance of an algorithm in terms of
time it takes to produce output. We could also consider utilization of other resources such
as memory, communication bandwidth etc. One could also consider various other factors
such as user-friendliness, maintainability, stability, modularity, and security etc. In this
course we will mainly be concerned with time efficiency of algorithm.

4.1 Running Time

This is the total time that the algorithm takes to provide the solution. The running time of an
algorithm is a major factor in deciding the most efficient algorithm to solve a problem. There
are many ways we could measure the running time, such as clock cycles taken to output, time
taken (in seconds), or the number of lines executed in the pseudo-code. But these measures
suffer from the fact that they are not constant over time, as in the case of clock cycles,

6

which varies heavily across computing systems, or time taken(in seconds), which depends on
machine/hardware, operating systems, other concurrent programs, implementation language,
and programming style etc.

We need a consistent mechanism to measure running time of an algorithm. This runtime
should be independent of the platform of actual implementation of the algorithm (such
as actual computer architecture, operating system etc.) We need running time also to be
independent to actual programing language used for implementing the algorithm.

Over the last few decades, Moore’s Law has predicted the rise in computing power available
in orders of magnitude, so processing that might have been unfeasible 20 years ago is trivial
with today’s computers. Hence, a more stable measure is required, which is the number of
elementary operations that are executed, based on the size of input. We will define what
constitutes an elementary operation below.

4.2 Elementary operations

These are the operations in the algorithm that are used in determining the running time of
the algorithm. These are defined as the operations which constitute the bulk of processing
in the algorithm. For instance, an algorithm that finds the maximum in a list of numbers
by comparing each number with every other number in the list, will designate the actual
comparison between two numbers (is a < b ?) as the elementary operation. Generally, an
elementary operation is any operation that involves processing of a significant magnitude.

4.3 Runtime as a function of input size

We want to measure runtime (number of elementary operations) as a function of size of
input. Note that this does not depend on machine , operating system or language. Size
of input is usually number of bits needed to encode the input instance, can be length of
an array, number of nodes in a graph etc. It is important to decide which operations are
counted as elementary, so keep this in mind while computing complexity of any algorithm.
There is an underlying assumption that all elementary operation takes a constant amount
of time.

4.4 Best/Worst/Average Case

For a fixed input size there could be different runtime depending on the actual instance. As
we saw in the parity test of an integer. We are generally interested in the worst case behavior
of an algorithm

Let T (I) be time, algorithm takes on an instance I. The best case running time is defined
to be the minimum value of T (I) over all instances of the same size n.

7

Best case runtime:
tbest(n) = minI:|I|=n{T (I)}

Worst case runtime:
tworst(n) = maxI:|I|=n{T (I)}

Average case:
tav(n) = AverageI:|I|=n{T (I)}

4.5 Growth of runtime as size of input

Apart from (generally) considering only the worst case runtime function of an algorithm.
We more importantly, are interesting in

1. Runtime of an algorithm on large input sizes

2. Knowing how the growth of runtime with increasing input sizes. For example we want
to know how the runtime changes when input size is doubled?

5 Arithmetic problems

Now that we have established the terminology and thinking styles, we look at some represen-
tative problems and see whether we can satisfy the questions with regards to the algorithm
employed.

5.1 Addition of two long integers

Input Two long integers, given as arrays A and B each of length n as above.
Output An array S of length n+ 1 such that S = A+B.

This problem is very simple if A, B, and their sum are within word size of the given computer.
But for larger n as given in the problem specification, we perform the grade-school digit by
digit addition, taking care of carry etc.

A =
6 5 4 3 2 1 0

4 6 9 2 7 5 8

B =
6 5 4 3 2 1 0

5 1 7 2 2 6 1

+

1 1 1

5 4 6 9 2 7 5 8

8 5 1 7 2 2 6 1

1 3 9 8 6 5 0 1 9

In order to determine the tens digit and unit digit of a 2-digit number, we can employ the
mod operator and the divide operator. To determine the units digit, we simply mod by 10.
As for the tens digit, we divide by 10, truncating the decimal. We need this to determine
the carry as we do manually. Can there be a better way to determine the carry in this case,

8

think of what is the (largest) value of a carry when we add two 1-digit integer. We can
determine if there should be a carry if a number is greater than 9, in that case we only have
to extract the unit digit. We discussed in class that if the mod operator and type-casting
is not available, then we can still separate digits in an integer by using the definition of
positional number system.

The algorithm, with mod operator is as follows.

Algorithm 4 Adding two long integers

Input: A,B - n-digits arrays of integers A and B
Output: S = A+B
1: c← 0
2: for i = 0 to n− 1 do
3: S[i]← (A[i] +B[i] + c) mod 10
4: c← (A[i] +B[i] + c)/10

5: S[n]← c

Correctness of Algorithm for adding two integers given as arrays The correction
of this algorithm again follows from the definition of addition.

Runtimeof Algorithm for adding two integers given as arrays The running time
(number of single digits) arithmetic operations performed by this algorithm is determined
in details as follows, later on we will not go into so much detail. We count how many times
each step is executed.

Algorithm 5 Adding two long integers

Input: A,B - n-digits arrays of integers A and B
Output: S = A+B
1: c← 0

}
1 time

2: for i = 0 to n− 1 do

3: S[i]← (A[i] +B[i] + c) mod 10

 n times
4: c← (A[i] +B[i] + c)/10

5: S[n]← c

}
1 time

We do not count the memory operations, the algorithm clearly performs 4n 1-digit additions,
n divisions and n mod operations. If we consider all arithmetic operations to be of the
same complexity, then the runtime of this algorithm is 6n. You should be able to modify
the algorithm to be able to add to integers that do not have the same number of digits.

9

Can we improve this algorithm? Since any algorithm for adding n digits integers must
perform some arithmetic on every digit, we cannot really improve upon this algorithm.

5.2 Multiplication of two long integers

Input Two long integers, given as array A and B each of length n as above.
Output An array C length 2n+ 1 such that C = A ·B.

We apply the grade-school multiplication algorithms, multiply A with the first digit of B,
then with the second digit of B and so on, and adding all of these arrays. We use a n × n
array Z (a 2-dimensional array or a matrix) to store the intermediate arrays. Of course, now
we know how to add these arrays.

2 7 5 8
9 6 3 2
5 5 1 6

8 2 7 4
1 6 5 4 8

2 4 8 2 2
2 6 5 6 5 0 5 6

×

Here again we will use the technique to determine the carry and the unit digits etc. Can we
be sure that when we multiply two 1 digit integers, the result will only have at most 2 digits.

Algorithm 6 Multiplying two long integers

Input: A,B - n-digits arrays of integers A and B
Output: C = A ∗B
1: for i = 1 to n do
2: c← 0
3: for j = 1 to n do
4: Z[i][j + i− 1]← (A[j] ∗B[i] + c) mod 10
5: c← (A[j] ∗B[i] + c)/10

6: Z[i][i+ n]← c

7: carry ← 0
8: for i = 1 to 2n do
9: sum← carry
10: for j = 1 to n do
11: sum← sum+ Z[j][i]

12: C[i]← sum mod 10
13: carry ← sum/10

14: C[2n+ 1]← carry

10

Runtime of grade-school multiplication algorithm

� The algorithm has two phases, in the first phase it computes the matrix, where we do all
multiplications, and in the second phase it adds all elements of the matrix column-wise.

� In the first phases two for loops are nested each running for n iterations. You should
know that by the product rule the body of these two nested loops is executed n2 times.
As in addition, the loop body has 6 arithmetic operations. So in total the first phase
performs 6n2 operations.

� In the second phase, the outer loop iterates for 2n iterations which for each value of i
the inner loop iterates n times (different value of j. While in the body of the nested
loop there is one addition performed, so in total 2n2 additions. Furthermore, the outer
loop (outside the nested loop) performs one mod and one divisions, so a total of 2n
arithmetic.

� The grand total number of arithmetic operations performed is 6n2+2n2+2n = 8n2+2n
arithmetic operations.

� Question, when we double the size of input, (that is make n double of the previous),
what happens to the number of operations, how do they grow. Draw a table of the
number of operations for n = 2, 4, 8, 16, 32, etc.

5.2.1 A reformulation of the multiplication problem

In this section, we demonstrate how the multiplication problem can be reformulated and
how it helps us solve the problem much simply.

Think of the integers A and B in positional number system and apply distributive and
associative laws we get the following very simple algorithm.

(
A[0] ∗ 100 + A[1] ∗ 101 + A[2] ∗ 102 + . . .

)
×
(
B[0] ∗ 100 +B[1] ∗ 101 +B[2] ∗ 102 + . . .

)
The algorithm with this view of the problem is as follows

Algorithm 7 Multiplying two long integers using Distributive law of multiplication over
addition
1: C ← 0

2: for i = 1 to n do

3: for j = 1 to n do

4: C ← C + 10i+j × A[i] ∗B[j]

The correctness of this algorithm also follows from definition of multiplication and it performs
n2 single-digit multiplications and n2 shifting (multiplication with powers of 10).

11

Can we improve these algorithms? When we study divide and conquer paradigm of
algorithm design we will improve upon this algorithm.

5.3 Exponentiation of an integer to a power

Input Two integers a and n ≥ 0.
Output An integer x such that x = an.

Again we apply the grade-school repeated multiplication algorithm, i.e. just execute the
definition of an and multiply a n times. More precisely

x = an =

n times︷ ︸︸ ︷
a ∗ a ∗ . . . ∗ a ∗ a

5.3.1 Exponentiation by iterative multiplication

This way of looking at an leads us to the following algorithm.

Algorithm 8 Exponentiation

Input: a, n - Integers a and n ≥ 0
Output: an

1: x← 1
2: for i = 1 to n do
3: x← x ∗ a
4: return x

This algorithm clearly is correct and takes n multiplications. This time integer multiplica-
tions not 1-digit multiplications. We can tweak it to save one multiplication by initializing
x to a, but be careful what if n = 0.

5.3.2 Exponentiation by recursive multiplication

Exponentiation can also be performed by a recursive algorithm, in case you recursively love
recursion. We use this way of looking at exponentiating.

an =


a ∗ an−1 if n > 1

a if n = 1

1 if n = 0

The algorithm implementing the above view of exponentiation is as follows.

12

Algorithm 9 Recursive Exponentiation

Input: a, n - Integers a and n ≥ 0
Output: an

1: function rec-exp(a,n)
2: if n = 0 then return 1
3: else if n = 1 then return a
4: else
5: return a ∗ rec-exp(a, n− 1)

It’s correctness can be proved with simple inductive reasoning.

Runtime of recursive exponentiation Its runtime is something, ok let me tell you this.
Say its runtime is T (n) when I input n, (we will discuss recurrences and their solution in
more detail later). We have

T (n) =


1 if n = 0

1 if n = 1

T (n− 1) if n ≥ 2

5.3.3 Exponentiation by repeated squaring

We can improve by a lot by considering the following magic of power (or power of magic).

an =


an/2 · an/2 if n > 1 even

a · an−1/2 · an−1/2 if n is odd

1 if n = 0

Note that when n is even n/2 is an integer and when n is odd, (n − 1)/2 is an integer, so
in both cases we get the same problem (exponentiating one integer to the power of another
integer) but of smaller size. And smaller powers are supposed to be easy, really! well at least
n = 0 or 1, or sometime even 2. So we exploit this formula and use recursion.

13

Algorithm 10 Exponentiation by repeated squaring

Input: a, ns - Integers a and n ≥ 0
Output: an

1: function rep-sq-exp(a,n)
2: if n = 0 then return 1
3: else if n > 0 and n is even then
4: z ← rep-sq-expP(a, n/2)
5: return z ∗ z
6: else
7: z ← rep-sq-exp(a, (n− 1)/2)
8: return a ∗ z ∗ z

Again correctness of this algorithm follows form the above formula. But you need to prove
it using induction, i.e. prove that this algorithm returns an for all positive integers n, prove
the base case using the stopping condition of this function etc.

Runtime of repeated squaring It is not very straight-forward to find the runtime of a
recursive procedure always, in this case it is quite easy. Usually the runtime of a recursive
algorithm is expressed as a recurrence relation, (that is the time algorithm takes for an input
of size n is defined in terms of the time it takes on inputs of smaller size). In this case we
know that the runtime doesn’t really depends on the size of a (well not directly, we may
assume that a is restricted to be an int. Multiplying y a few times with itself is just like
multiplying z a few times with itself, the only thing that matters is how many times you do
the multiplication).

In this case denote the runtime of Rep-Sq-EXP on input a, n as R(n) (as discussed above a
doesn’t have to be involved in determining runtime of Rec-EXP). So we have to determine
R(n) as a function of n. What we know just by inspecting the algorithm is summarized in
the following recurrence relation.

R(n) =


1 if n = 0

1 if n = 1

R(n/2) + 2 if n > 1 and n is even

R(n−1/2) + 3 if n > 1 and n is odd

We will discuss recurrence relation later, but for now if you think about it as follows: Assume
n is a power of 2 so it stays even when halve it.

R(n) = R (n/2) + 2 = R (n/4) + 2 + 2 = R (n/8) + 2 + 2 + 2 = . . .

In general we have

R(n) = R (n/2j) +

j times︷ ︸︸ ︷
2 + 2 + . . .+ 2

14

when j = log n, then we get

R(n) = R (n/2logn) +

logn times︷ ︸︸ ︷
2 + 2 + . . .+ 2

= R (n/n) +

logn times︷ ︸︸ ︷
2 + 2 + . . .+ 2

= R (1) +

logn times︷ ︸︸ ︷
2 + 2 + . . .+ 2 = 1 + 2 log n

It is very easy to argue that in general that is for n not necessarily power of 2 or even, the
runtime is something like 1 + 3 log n.

Exercise: Give a non-recursive implementation of repeated squaring based exponentiation.
You can also use the binary expansion of n

5.4 Dot Product

Dot Product is an operation defined for two n dimensional vectors. Dot product of two
vectors A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn) is defined as

A ·B =
n∑

i=1

ai ∗ bi
·

A B

= Σn
i=1aibi

b1

...

b2

bn

a1
a2

an

...

Input: Two n-dimensional vectors as arrays A and B

Output: A ·B := ⟨A,B⟩ := A[1]B[1] + . . .+ A[n]B[n] :=
n∑

i=1

A[i]B[i]

Dot product is also commonly called an inner product or a scalar product. The a geometric
interpretation for dot product is the following. If u is a unit vector and v is any vector then
v · u is the projection of v onto u. The projection of any point p on v onto u is the point on
u closest to p. If v and u are both unit vectors then v · u is the cos of the angle between the
two vectors. So in a way the dot product between two vectors measures their similarity. It
tells us how much of v is in the direction of u.

What we’re interested in is how to compute the dot product. We need to multiply all the
corresponding elements and then sum them up. So we can run a for loop, keep a running
sum and at the ith turn add the product of the ith terms to it. The exact code is given below.

15

Algorithm 11 Dot product of two vectors

Input: A,B - n dimensional vectors as arrays of length n
Output: s = A ·B
1: function dot-prod(A, B)
2: s← 0
3: for i = i to n do
4: s← s+ A[i] ∗B[i]

5: return s

Runtime of dot-prod How much time does this take? Well that depends on a lot of
factors. What machine you’re running the program on. How many other programs are being
run at the same time. What operating system you’re using. And many other things. So
just asking how much time a program takes to terminate doesn’t really tell us much. So
instead we’ll ask a different question. How many elementary operations does this program
performs. Elementary operations are things such as adding or multiplying two 32 bit num-
bers, comparing two 32 bit numbers, swapping elements of an array etc. In particular we’re
interested in how the number of elementary operations performed grows with the size of the
input.This captures the efficiency of the algorithm much better.

So with that in mind, let’s analyze this algorithm. What’s the size of the input? A dot
product is always between two vectors. What can change however is the size of these vectors.
So that’s our input size. So suppose the vectors are both n dimensional. Then this code
performs n additions and n multiplications. So a total of 2n elementary operations are
performed. Can we do any better? Maybe for particular cases we can, when a vector
contains a lot of zeros. But in the general case probably this is as efficient as we can get.

5.5 Matrix-Vector Multiplication

Input: Matrix A and vector b
Output: c = A ∗ b

� Condition: num columns of A = num rows of b

Am×n × bn×1 = Cm×1

Matrix-vector multiplication only for the case when the number of columns in matrix A
equals the number of rows in vector x. So, if A is an m × n matrix (i.e., with n columns),
then the product Ax is defined for n × 1 column vectors x. If we let Ax = b, then b is
an m × 1 column vector. Matrix vector multiplication should be known to everyone, it is
explained in the following diagram

16

...

A B

... ...

a11 a12 a1n. . .
a21 a22 a2n. . .
a31 a32 a3n. . .

. . .am1 am2 amn

=

Dot Product

...

m× n n× 1 m× 1

C

...

b1
b2

b3

bn

Algorithm for Matrix vector multiplication is given as follows.

Algorithm 12 Matrix Vector Multiplication

Input: A,B - m × n matrix and n × 1 vector respectively given as arrays of appropriate
lengths

Output: C = A×B
1: function Mat-VectProd(A, B)
2: C[][]← zeros(m× 1)
3: for i = 1 to m do
4: C[i]← Dot-Prod(A[i][:], B)

return C

� Correct by definition

� Runtime is m dot-products of n-dim vectors

� Total runtime m× n real multiplications and additions

5.6 Matrix Multiplication via dot product

Input: Matrices A and B Output: C = A ∗B

If A and B are two matrices of dimensions m× n and n× k, then their product is another
matrix C of dimensions m× k such that the (i, j)th entry of C is the dot product of the ith
row of A with the jth column of B. That is

(C)ij = Ai ·Bj.

This is explained in the following diagram

17

A

B

Dot Product

m× n m× k

b11 b1k. . .

b21 b2k

bn1 bnk

c11

...
...

n× k

Dot Product

C

...
...

. . .

. . .

. . .

. . .

. . .

a11 a12 a1n. . .
a21 a22 a2n. . .
a31 a32 a3n. . .

. . .
...

...
...

am1 am2 amn . . .

We know how to compute the dot product of two vectors so we can use that for matrix
multiplication. The code is as follows

Algorithm 13 Matrix Matrix Multiplication

Input: A,B - m× n and n× k matrices respectively given as arrays of appropriate lengths
Output: C = A×B
1: function Mat-MatProd(A, B)
2: C[][]← zeros(m× k)
3: for i = 1 to m do
4: for j = 1 to k do
5: C[i][j]← dot-prod(A[i][:], B[:][j])

6: return C

Analysis : How many elementary operations are performed in this algorithm? i goes
from 1 to m and for each value of i, j goes from 1 to k. So the inner loop runs a total of
mk times. Each time the inner loop runs we compute a dot product of two n dimensional
vectors. Computing the dot product takes of two n dimensional vectors takes 2n operations,
so the algorithm uses a total of mk ∗ 2n = 2mnk operations. Can we do any better for this
problem? We defined matrix multiplication in terms of dot products and we said 2n is the
minimum number of operations needed for a dot product, so it would seem we can’t. But
in fact there is a better algorithm for this. For those interested, you can look up Strassen’s
Algorithm for matrix multiplication.

5.7 Matrix-Matrix Multiplication via Matrix-Vector Product

Matrix matrix multiplication (of appropriate dimensions) can be achieved equivalently through
repeated matrix-vector-multiplication. The process is explained in the following figure
followed by its pseudo code.

18

A

B

Matrix-Vector Product

m× n m× k

b11 b1k. . .

b21 b2k

bn1 bnk

c11

...
...

n× k

C

...
...

. . .

. . .

. . .

. . .

. . .

a11 a12 a1n. . .
a21 a22 a2n. . .
a31 a32 a3n. . .

. . .
...

...
...

am1 am2 amn . . .

Algorithm 14 Matrix Matrix Multiplication

Input: A,B - m× n and n× k matrices respectively given as arrays of appropriate lengths
Output: C = A×B
1: function Mat-MatProd(A, B)
2: C[][]← zeros(m× k)
3: for j = 1 to k do
4: C[:][j]←Mat-VectProd(A,B[:][j])

5: return C

Runtime of this algorithm is k multiplication of dimension m × n matrix with vectors of
dimension n × 1. Each matrix vector multiplication takes mn times as discussed above, so
total runtime of this algorithm is kmn.

19

	Parity check of an integer
	Parity Check: Formulation for large input
	Parity Check: A Different Formulation

	Algorithmic thinking and Terminology
	Algorithms Design Questions
	What is the problem?
	Is the algorithm correct?
	 How much time does it take?
	Runtime:

	 Can we improve the algorithm?

	Analysis of Algorithms
	Running Time
	Elementary operations
	Runtime as a function of input size
	Best/Worst/Average Case
	Growth of runtime as size of input

	Arithmetic problems
	Addition of two long integers
	Correctness of Algorithm for adding two integers given as arrays
	Runtimeof Algorithm for adding two integers given as arrays

	Multiplication of two long integers
	Runtime of grade-school multiplication algorithm
	A reformulation of the multiplication problem

	Exponentiation of an integer to a power
	Exponentiation by iterative multiplication
	Exponentiation by recursive multiplication
	Runtime of recursive exponentiation

	Exponentiation by repeated squaring
	Runtime of repeated squaring

	Dot Product
	Runtime of dot-prod

	Matrix-Vector Multiplication
	Matrix Multiplication via dot product
	Matrix-Matrix Multiplication via Matrix-Vector Product

