Discrete Mathematics

Number Theory \& Cryptography

- Divisibility and Congruence
- Modular Arithmetic and its Applications
- GCD, (Extended) Euclidean Algorithm, Relative Prime
- The Caesar Cipher and Affine Cipher, Modular Inverse
- The Chinese Remainder Theorem
- Fermat's Little Theorem and Modular Exponentiation
- Private and Public Key Cryptography, The RSA Cryptosystem

Imdad ullah Khan

Private Key Cryptography

Alice sends message to Bob, Eve eavesdrops

Exchange the encryption key for a good cipher!

But during key exchange, Eve could get the key and all security is lost!

Public Key Cryptography

Alice sends message to Bob, Eve eavesdrops

Everyone knows public key, only Bob knows private key

Alice encrypts with public key, Bob decrypts with private key

Public Key Cryptography: RSA

Keys generation

- Choose two large primes p and q
$\triangleright p$ and q are secret
■ Set $n=p q$ and $T=(p-1)(q-1)$
■ Choose e such that $\operatorname{GCD}(e, T)=1$
- choose $d=e^{-1}$ modulo T
- e and n are public keys
\triangleright published on Internet
- d is private key
\triangleright only Bob knows it

Public Key Cryptography: RSA

Encryption

■ Encode message as an integer $M<n$

- Compute $C=M^{e} \% n \quad \triangleright$ Use modular exponentiation! \triangleright Encryption does not require private key

Decryption

- Compute $M=C^{d} \% n$
\triangleright Use modular exponentiation!

Public Key Cryptography: RSA

Keys generation

- Choose two large primes p and q
- Set $n=p q$ and $T=(p-1)(q-1)$
- Choose e such that $\operatorname{GCD}(e, T)=1$
- choose $d=e^{-1}$ modulo T
- e and n are public keys
- d is private key

Example Keys

- $p=59$ and $q=43$
- $n=2537$ and $T=2436$
- $e=13: \operatorname{GCD}(13,2436)=1$
- $d=937=13^{-1}$ modulo T
- 13 and 2537 are public keys
- 937 is private key

Encrypt "STOP" $\quad S \rightarrow 18, T \rightarrow 19, O \rightarrow 14, P \rightarrow 15 \Longrightarrow 18191415$
$C=M^{e} \% n \quad 1819^{13} \% 2537=2081 \quad 1415^{13} \% 2537=2182$

Encrypted message is 20812182

Public Key Cryptography: RSA

Keys generation

- Choose two large primes p and q
- Set $n=p q$ and $T=(p-1)(q-1)$
- Choose e such that $\operatorname{gcd}(e, T)=1$
- choose $d=e^{-1}$ modulo T
- e and n are public keys
- d is private key

Example Keys

- $p=59$ and $q=43$
- $n=2537$ and $T=2436$
- $e=13: \operatorname{gcd}(13,2436)=1$
- $d=937=13^{-1}$ modulo T
- 13 and 2537 are public keys
- 937 is private key

Decrypt "0981 0461"

$$
M=C^{d} \% T \quad 0981^{937} \% 2537=0704 \quad 0461^{937} \% 2537=1115
$$

$07 \rightarrow H, 04 \rightarrow E, 11 \rightarrow L, 15 \rightarrow P \Longrightarrow$ "HELP" \triangleright message is "HELP"

RSA: Proof of Correctness

We need to show that

- $C^{d} \% n$ is indeed equal to M
\triangleright Correctness
- Without knowing d cannot compute M from C
\triangleright Security

RSA: Proof of Correctness

Theorem (Correctness of RSA)

$C^{d}=\left(M^{e}\right)^{d} \equiv_{n} M$
Proof: $\quad d e \equiv_{T} 1 \quad$ Thus, $\quad \exists k \in \mathbb{Z}: d e=1+k(p-1)(q-1) . \quad$ So

$$
C^{d}=M^{d e} \equiv_{p q} M^{1+k(p-1)(q-1)}
$$

- $C^{d}=M\left(M^{p-1}\right)^{k(q-1)} \equiv_{p} M \cdot 1^{k(q-1)} \equiv_{p} M$
- $C^{d}=M\left(M^{q-1}\right)^{k(p-1)} \equiv_{q} M \cdot 1^{k(p-1)} \equiv_{q} M$

Hmm! a system of modular equations with $\operatorname{GCD}(p, q)=1$
$C^{d} \equiv_{p q} M$ is a solution to this system and by CRT its a unique solution

RSA: Proof of Security

Without knowing d cannot compute M from C

\triangleright Security

It is believed to be very hard to find p and q given $n=p q$

Prime factorization is a difficult problem
\triangleright though we do not have theoretical proof for it

