Discrete Mathematics

Number Theory \& Cryptography

- Divisibility and Congruence
- Modular Arithmetic and its Applications
- GCD, (Extended) Euclidean Algorithm, Relative Prime
- The Caesar Cipher and Affine Cipher, Modular Inverse
- The Chinese Remainder Theorem
- Fermat's Little Theorem and Modular Exponentiation
- Private and Public Key Cryptography, The RSA Cryptosystem

Imdad ullah Khan

Solving System of Simultaneous Congruences

The Chinese remainder theorem characterizes solvable system of simultaneous congruences and derive a solution

The Chinese Remainder Theorem

- Make an $m \times n$ grid
- Start from lower left and move up and right

■ Wrap around both from top to bottom and right to left

- At every step write integers starting from 0

			3	
		2		
5	1			
0				4

15	11	7	3	19
10	6	2	18	14
5	1	17	13	9
0	16	12	8	4

The Chinese Remainder Theorem

■ Make an $m \times n$ grid

- Start from lower left and move up and right

■ Wrap around both from top to bottom and right to left

- At every step write integers starting from 0

	7		3		11
6		2		10	
	1		9		5
0		8		4	

The Chinese Remainder Theorem

■ Make an $m \times n$ grid

- Start from lower left and move up and right

■ Wrap around both from top to bottom and right to left

- At every step write integers starting from 0

■ For which m and n the grid gets completely filled in?

15	11	7	3	19
10	6	2	18	14
5	1	17	13	9
0	16	12	8	4

	7		3		11
6		2		10	
	1		9		5
0		8		4	

The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (\mathbf{x}) are left. The Chinese emperor ordered a series of tasks

The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x) are left. The Chinese emperor ordered a series of tasks

Task-1: Make groups of 3 and report how many couldn't
$\triangleright x \% 3=1$

The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x) are left. The Chinese emperor ordered a series of tasks

Task-1: Make groups of 3 and report how many couldn't
Task-2: Make groups of 5 and report how many couldn't
$\triangleright x \% 3=1$
$\triangleright x \% 5=2$

The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x) are left. The Chinese emperor ordered a series of tasks

Task-1: Make groups of 3 and report how many couldn't
Task-2: Make groups of 5 and report how many couldn't Task-3: Make groups of 7 and report how many couldn't
$\triangleright x \% 3=1$
$\triangleright x \% 5=2$
$\triangleright x \% 7=2$

 " n " n " $n \neq$

The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x) are left. The Chinese emperor ordered a series of tasks

Task-1: Make groups of 3 and report how many couldn't
$\triangleright x \% 3=1$
Task-2: Make groups of 5 and report how many couldn't
$\triangleright x \% 5=2$
Task-3: Make groups of 7 and report how many couldn't
$\triangleright x \% 7=2$

Magically the emperor figured out their number

The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x) are left. The Chinese emperor ordered a series of tasks

Magically the emperor figured out their number
$\triangleright x=37$

Solve a system of modular congruences.

Find $x \leq 3 \cdot 5 \cdot 7$ satisfying

$$
\begin{array}{ll}
x \equiv \equiv_{3} & 1 \\
x \equiv_{5} & 2 \\
x \equiv_{7} & 2
\end{array}
$$

The Chinese Remainder Theorem

Theorem

If m_{1}, m_{2}, m_{3} are relatively prime and a_{1}, a_{2}, a_{3} are integers, then

$$
\begin{array}{ll}
x \equiv m_{1} & a_{1} \\
x \equiv m_{2} & a_{2} \\
x \equiv m_{3} & a_{3}
\end{array}
$$

$$
x \equiv m_{2} \quad a_{2} \quad \text { has a unique solution modulo } m=m_{1} m_{2} m_{3}
$$

Proof by construction:

[1] $n_{1}=m / m_{1}$
(1) $n_{2}=m / m_{2}$
(1) $n_{3}=m / m_{3}$
[2 $y_{1}=n_{1}^{-1} \% m_{1}$
[2 $y_{2}=n_{2}^{-1} \% m_{2}$
[2 $y_{3}=n_{3}^{-1} \% m_{3}$
$\triangleright y_{k}$ always exists as $\operatorname{GCD}\left(n_{k}, m_{k}\right)=1$
$x=a_{1} n_{1} y_{1}+a_{2} n_{2} y_{2}+a_{3} n_{3} y_{3}$
x satisfies all congruences. Uniqueness!

The Chinese Remainder Theorem

Solve the system of modular congruences

$$
\begin{array}{lll}
x & \equiv_{3} & 1 \\
x & \equiv_{5} & 2 \\
x & \equiv_{7} & 2
\end{array}
$$

Find $n_{1}, y_{1}, n_{2}, y_{2}, n_{3}, y_{3}$
as follows

$$
\begin{array}{ll}
n_{1}=5 \times 7=35 & y_{1}=35^{-1} \text { modulo } 3=2 \\
n_{2}=3 \times 7=21 & y_{2}=21^{-1} \text { modulo } 5=1 \\
n_{3}=3 \times 5=15 & y_{3}=15^{-1} \text { modulo } 7=1
\end{array}
$$

Note that by

$$
n_{1} y_{1} \equiv_{3} 1, \quad n_{1} y_{1} \equiv_{5} \quad 0, \quad n_{1} y_{1} \equiv_{7} 0
$$ construction

$$
n_{2} y_{2} \equiv \equiv_{3} 0, \quad n_{2} y_{2} \equiv_{5} 1, \quad n_{2} y_{2} \equiv_{7} 0
$$

$$
n_{3} y_{3} \equiv_{3} \quad 0, \quad n_{3} y_{3} \equiv_{5} \quad 0, \quad n_{3} y_{3} \equiv_{7} 1
$$

$$
x=a_{1} n_{1} y_{1}+a_{2} n_{2} y_{2}+a_{3} n_{3} y_{3}=1 \cdot 70+2 \cdot 21+2 \cdot 15=142 \equiv_{105} 37
$$

Verify that $37 \equiv_{3} 1, \quad 37 \equiv_{5} 2, \quad 37 \equiv_{7} 2$

The Chinese Remainder Theorem

Theorem

If $m_{1}, m_{2}, \ldots, m_{n}$ are relatively prime and $a_{1}, a_{2}, \ldots, a_{n}$ are integers, then

$$
\begin{aligned}
& x \equiv m_{1} \quad a_{1} \\
& x \equiv m_{2} \quad a_{2} \\
& X \equiv m_{n} \quad a_{n}
\end{aligned}
$$

has a unique solution modulo $m=\prod_{i=1}^{n} m_{i}$

Proof by construction is the same

The Chinese Remainder Theorem

Using CRT we can uniquely represent any integer with remainders when moduli are relatively prime
\triangleright The integer has to be less than the product of moduli
Any integer $0 \leq x<15$ can be represented by ($x \% 3, x \% 5$)
$12=(0,2)$
$11=(2,1)$
How many ordered pairs are possible?
\triangleright Will the grid fill?
Used two smaller integers to represent a big integer!
To perform arithmetic upon large integers, we can instead perform arithmetic on these small remainders

The Chinese Remainder Theorem

Compute $123684+413456$
By CRT any $0 \leq x<99 \cdot 98 \cdot 97 \cdot 95=89,403,930$ can be represented by its remainders modulo these moduli
$123684+413456=(33,8,9,89)+(32,92,42,16)$
$123684+413456=(65,2,51,10)$
To convert back, Solve

$$
\begin{array}{lll}
x & \equiv_{99} & 65 \\
x & \equiv_{98} & 2 \\
x & \equiv_{97} & 51 \\
x & \equiv_{95} & 10
\end{array}
$$

We get
$x=123684+413456=537140$

The Chinese Remainder Theorem

Compute 1345×2368
By CRT any $0 \leq x<99 \cdot 98 \cdot 97 \cdot 95=89,403,930$ can be represented by its remainders modulo these moduli

```
1345 < 2368
= (58, 71, 84, 15) * (91, 16, 40, 88)
\coordinate-wise products
=(5278, 1136, 3360, 1320) =(31, 58, 62, 85)

To convert back, Solve
\[
\begin{array}{lll}
x & \equiv_{99} & 31 \\
x & \equiv_{98} & 58 \\
x & \equiv_{97} & 62 \\
x & \equiv_{95} & 85
\end{array}
\]

We get
\(x=1345 \times 2368=3184960\)```

