## Discrete Mathematics

## Number Theory \& Cryptography

- Divisibility and Congruence
- Modular Arithmetic and its Applications
- GCD, (Extended) Euclidean Algorithm, Relative Prime
- The Caesar Cipher and Affine Cipher, Modular Inverse
- The Chinese Remainder Theorem
- Fermat's Little Theorem and Modular Exponentiation
- Private and Public Key Cryptography, The RSA Cryptosystem


## Imdad ullah Khan

## Modular Arithmetic Applications: Cryptography

Cryptography encoding and decoding messages

- Cipher: A method for encoding messages

■ Plaintext: The original message to be encoded

- Ciphertext: The encoded message
- Encryption: The process of encoding messages
- Decryption: The process of decoding messages


## The Caesar Cipher

Cryptography: encoding and decoding messages

The Caesar Cipher (Substitution): Substitute each letter of the message by the letter coming three letters after it in the alphabet

How about $x, y$ and $z$ ?


## The Caesar Cipher

Cryptography: encoding and decoding messages

The Caesar Cipher (Substitution): Substitute each letter of the message by the letter coming three letters after it in the alphabet

Replace 3 with some other integer s

Encryption
$c \leftarrow(p+s) \% 26$

## Decryption

$$
p \leftarrow(c-s) \% 26
$$

Even further $\quad c \leftarrow(t p+s) \% 26$
$\triangleright$ Affine Cipher

## Affine Cipher

Affine Cipher:

## Encryption

$c \leftarrow(t p+s) \% 26$

## Decryption

$p \leftarrow \frac{(c-s)}{t} \% 26$
$t p=(c-s) \% 26 \quad \Longrightarrow \quad p=t^{-1}(c-s) \% 26$
$a^{-1}$ (multiplicative inverse): $a \cdot a^{-1}=1 \% 26$
If $t=3$, then $3 \cdot 9=27 \% 26=1$
$\triangleright 9=3^{-1}$
If $t=5$, then $5 \cdot 21=105 \% 26=1$
$\downarrow 21=5^{-1}$

Not every integer has an inverse
What is inverse of 4 modulo 26 ?

## Modular Inverse

## Definition

$b$ is the inverse of $a$ modulo $m$ iff $a \cdot b \equiv_{m} 1$

For real numbers, every $x \neq 0 \in \mathbb{R}$ has an inverse
For integers, only 1 has an inverse

What if we were doing modular arithmetic?

Interesting property: integers also have inverses (at least some of them)

## Modular Inverse

## Definition

$b$ is the inverse of $a$ modulo $m \quad$ iff $a \cdot b \equiv_{m} 1$

| $Z_{5}$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 |
| 2 | 2 | 4 | 1 | 3 |
| 3 | 3 | 1 | 4 | 2 |
| 4 | 4 | 3 | 2 | 1 |


| $Z_{6}$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 |
| 2 | 2 | 4 | 0 | 2 | 4 |
| 3 | 3 | 0 | 3 | 0 | 3 |
| 4 | 4 | 2 | 0 | 4 | 2 |
| 5 | 5 | 4 | 3 | 2 | 1 |

## Modular Inverse

## Definition

$b$ is the inverse of $a$ modulo $m$ iff $a \cdot b \equiv_{m} 1$

## Theorem

a has an inverse modulo $m$ iff $a$ and $m$ are relatively primes

Equivalently, inverse of a modulo $m$ exists iff $\operatorname{GCD}(a, m)=1$

$$
\begin{array}{ll}
\operatorname{GCD}(3,7)=1 & 3 \cdot 5 \% 7=1 \\
\operatorname{GCD}(4,11)=1 & 4 \cdot 3 \% 11=1 \\
\operatorname{GCD}(8,9)=1 & 8 \cdot 8 \% 9=1
\end{array}
$$

## Modular Inverse

## Theorem

a has an inverse modulo $m$ iff $\operatorname{GCD}(a, m)=1$

## Proof:

$$
\begin{aligned}
& \operatorname{GCD}(a, m)=1 \\
& \Longrightarrow s a+t m=1 \\
& \Longrightarrow t m=1-s a \Longrightarrow m \mid 1-s a \\
& \Longrightarrow 1-s a \equiv_{m} 0 \\
& \Longrightarrow s a \equiv_{m} 1
\end{aligned}
$$

We can find $s$ and $t$ from Extended Euclidean Algorithm

## Modular Arithmetic: Cancellation

$$
\begin{aligned}
& \text { If } a \equiv_{m} b \text {, then } a+c \equiv_{m} b+c \\
& \text { If } a \equiv_{m} b \text {, then } a c \equiv_{m} b c \\
& \text { Just as in ' }=^{\prime} \text { for real numbers } \\
& \text { if } a c \equiv_{m} b c \text {, then is } a \equiv_{m} b \text { ? } \\
& 3 \cdot 4 \equiv_{8} 1 \cdot 4 \text { but } 3 \not \equiv_{8} 1 \\
& 4 \cdot 3 \equiv_{9} 1 \cdot 3 \text { but } 4 \not \equiv_{9} 1 \\
& 2 \cdot 4 \equiv_{12} 5 \cdot 4 \text { but } 2 \not \equiv_{12} 5
\end{aligned}
$$

We cannot cancel two "equal" values on both side of a congruence

## Modular Arithmetic: Cancellation

$$
\begin{aligned}
& \text { Lemma } \\
& \text { Let } \operatorname{GCD}(a, m)=1 \text {. If } a b \equiv_{m} a c, \text { then } b \equiv_{m} c \\
& \operatorname{GCD}(a, m)=1 \Longrightarrow \exists a^{-1}: a a^{-1} \equiv_{m} 1 \\
& a b \equiv_{m} a c \\
& \Longrightarrow a b a^{-1} \equiv_{m} a c a^{-1} \\
& \Longrightarrow b \equiv_{m} c
\end{aligned}
$$

Typically modulus is a prime $\Longrightarrow$ an inverse exists for every integer.

Modulo a prime, integers behave "like" real numbers

## Solving Congruence

Finding $a^{-1} \% m$ is solving the congruence $a x \equiv_{m} 1$
How about solving other congruences!

$$
\begin{aligned}
& \text { Solve } 2 x \equiv_{7} 3 \\
& \operatorname{GCD}(2,7)=1 \text { and } 2 \cdot 4 \equiv_{7} 1 \text { so } 4 \text { is } 2^{-1} \\
& 2 x \equiv_{7} 3 \Longrightarrow 2 x \cdot 4 \equiv_{7} 3 \cdot 4 \\
& \Longrightarrow x \equiv_{7} 12 \equiv_{7} 5
\end{aligned}
$$

Verify that all integers of the form $5+7 t$ satisfy this congruence

## Solving Congruence

Finding $a^{-1} \% m$ is solving the congruence $a x \equiv_{m} 1$

How about solving other congruences!

$$
\text { Solve } 3 x \equiv_{6} 2
$$

Going through all numbers $\% 6$, no $x$ satisfy this congruence

We say

$$
3 x \equiv_{6} 2 \quad \text { has no solutions }
$$

