Number Theory & Cryptography

- Divisibility and Congruence
- Modular Arithmetic and its Applications
- GCD, (Extended) Euclidean Algorithm, Relative Prime
- The Caesar Cipher and Affine Cipher, Modular Inverse
- The Chinese Remainder Theorem
- Fermat's Little Theorem and Modular Exponentiation
- Private and Public Key Cryptography, The RSA Cryptosystem

Imdad ullah Khan

Modular Arithmetic Applications: Cryptography

Cryptography encoding and decoding messages

- Cipher: A method for encoding messages
- Plaintext: The original message to be encoded
- Ciphertext: The encoded message
- Encryption: The process of encoding messages
- Decryption: The process of decoding messages

Cryptography: encoding and decoding messages

The Caesar Cipher (Substitution): Substitute each letter of the message by the letter coming three letters after it in the alphabet

How about x, y and z?

Cryptography: encoding and decoding messages

The Caesar Cipher (Substitution): Substitute each letter of the message by the letter coming three letters after it in the alphabet

Replace 3 with some other integer s

Encryption $c \leftarrow (p+s) \% 26$ Decryption $p \leftarrow (c - s) \% 26$

Even further $c \leftarrow (tp + s) \% 26$

▷ Affine Cipher

Affine Cipher

Affine Cipher:

Encryption

 $c \leftarrow (tp+s) \% 26$

Decryption

$$p \leftarrow \frac{(c-s)}{t} \% 26$$

$$tp = (c-s) \% 26 \implies p = t^{-1}(c-s) \% 26$$

 a^{-1} (multiplicative inverse): $a \cdot a^{-1} = 1 \% 26$

▷ $9 = 3^{-1}$ ▷ $21 = 5^{-1}$ If t = 3, then $3 \cdot 9 = 27 \% 26 = 1$

If t = 5, then $5 \cdot 21 = 105 \% 26 = 1$

Not every integer has an inverse

What is inverse of 4 modulo 26?

Definition

b is the inverse of a modulo m iff $a \cdot b \equiv_m 1$

For real numbers, every $x \neq 0 \in \mathbb{R}$ has an inverse

For integers, only 1 has an inverse

What if we were doing modular arithmetic?

Interesting property: integers also have inverses (at least some of them)

Definition

b is the inverse of a modulo m iff $a \cdot b \equiv_m 1$

Z_5	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

Z_6	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	2	1

Modular Inverse

Definition

b is the inverse of a modulo m iff $a \cdot b \equiv_m 1$

Theorem

a has an inverse modulo m iff a and m are relatively primes

Equivalently, inverse of a modulo m exists iff GCD(a, m) = 1

7 = 1
1

GCD(4, 11) = 1 $4 \cdot 3 \% 11 = 1$

GCD(8,9) = 1 $8 \cdot 8 \% 9 = 1$

Modular Inverse

Theorem

a has an inverse modulo m iff GCD(a, m) = 1

Proof:

 $\operatorname{GCD}(a,m) = 1$

- \implies sa + tm = 1
- $\implies tm = 1 sa \implies m \mid 1 sa$
- $\implies 1 sa \equiv_m 0$
- \implies sa $\equiv_m 1$

We can find s and t from Extended Euclidean Algorithm

Modular Arithmetic: Cancellation

If $a \equiv_m b$, then $a + c \equiv_m b + c$ If $a \equiv_m b$, then $ac \equiv_m bc$

Just as in ' =' for real numbers if $ac \equiv_m bc$, then IS $a \equiv_m b$?

 $3 \cdot 4 \equiv_8 1 \cdot 4 \quad \text{but} \quad 3 \not\equiv_8 1$ $4 \cdot 3 \equiv_9 1 \cdot 3 \quad \text{but} \quad 4 \not\equiv_9 1$ $2 \cdot 4 \equiv_{12} 5 \cdot 4 \quad \text{but} \quad 2 \not\equiv_{12} 5$

We cannot cancel two "equal" values on both side of a congruence

Modular Arithmetic: Cancellation

Lemma

Let GCD(a, m) = 1. If $ab \equiv_m ac$, then $b \equiv_m c$

$$GCD(a, m) = 1 \implies \exists a^{-1} : aa^{-1} \equiv_m 1$$
$$ab \equiv_m ac$$
$$\implies aba^{-1} \equiv_m aca^{-1}$$
$$\implies b \equiv c$$

Typically modulus is a prime \implies an inverse exists for every integer.

Modulo a prime, integers behave "like" real numbers

Solving Congruence

Finding a^{-1} % *m* is solving the congruence $ax \equiv_m 1$

How about solving other congruences!

Solve $2x \equiv_7 3$

GCD(2,7) = 1 and $2 \cdot 4 \equiv_7 1$ so $4 \text{ is } 2^{-1}$

$$2x \equiv_7 3 \implies 2x \cdot 4 \equiv_7 3 \cdot 4$$

 $\implies x \equiv_7 12 \equiv_7 5$

Verify that all integers of the form 5 + 7t satisfy this congruence

Solving Congruence

Finding a^{-1} % *m* is solving the congruence $ax \equiv_m 1$

How about solving other congruences!

Solve $3x \equiv_6 2$

Going through all numbers % 6, no x satisfy this congruence

We say

$$3x \equiv_6 2$$
 has no solutions