Discrete Mathematics

Number Theory \& Cryptography

- Divisibility and Congruence
- Modular Arithmetic and its Applications
- GCD, (Extended) Euclidean Algorithm, Relative Prime
- The Caesar Cipher and Affine Cipher, Modular Inverse
- The Chinese Remainder Theorem
- Fermat's Little Theorem and Modular Exponentiation
- Private and Public Key Cryptography, The RSA Cryptosystem

Imdad ullah Khan

Prime Numbers

Definition

A positive integer p is prime if it has exactly two divisors, namely 1 and p

1 is not prime

Definition

A positive integer n is composite if it has a divisor $d, 1<d<n$

1 is not composite

Greatest common divisor

$\operatorname{GCD}(a, b):=$ the greatest common divisor
\triangleright the largest integer d that divides both a and b

$$
\begin{aligned}
& \operatorname{GCD}(24,32)=8 \\
& \operatorname{GCD}(22,24)=2 \\
& \operatorname{GCD}(15,5)=5 \\
& \operatorname{GCD}(25,15)=5 \\
& \operatorname{GCD}(13,20)=1 \\
& \operatorname{GCD}(11,33)=11
\end{aligned}
$$

Lemma: p is prime $\Longrightarrow \forall a \in \mathbb{Z} \operatorname{GCD}(p, a)=1$ or p
$\triangleright \because p$ has only two divisors 1 and p

Greatest common divisor

$\operatorname{GCD}(a, b):=$ the greatest common divisor
\triangleright the largest integer d that divides both a and b
a and b are relatively prime if $\operatorname{GCD}(a, b)=1$

Equivalently, a and b have no common factors
$\operatorname{GCD}(25,16)=1, \quad \operatorname{GCD}(24,25)=1$

A prime number p is relatively prime to all integers except its multiples

Greatest common divisor

$\operatorname{GCD}(a, b):=$ the greatest common divisor
\triangleright the largest integer d that divides both a and b

We can find $\operatorname{GCD}(a, b)$ by
finding all divisors of a and b, then
find the common divisors, and then
find the greatest among the commons

Greatest common divisor

$\operatorname{GCD}(a, b):=$ the greatest common divisor
\triangleright the largest integer d that divides both a and b

We can find $\operatorname{GCD}(a, b)$ from the prime factorization of a and b

$$
a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{n}^{a_{n}} \quad b=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{n}^{b_{n}}
$$

$\operatorname{GCD}(a, b)=p_{1}^{\min \left\{a_{1}, b_{1}\right\}} p_{2}^{\min \left\{a_{2}, b_{2}\right\}} \ldots p_{n}^{\min \left\{a_{n}, b_{n}\right\}}$

$$
\begin{aligned}
98 & =2 \cdot 7 \cdot 7 & & 2^{1} 3^{0} 5^{0} 7^{2} 11^{0} \ldots \\
420 & =2 \cdot 2 \cdot 3 \cdot 5 \cdot 7 & & =2^{2} 3^{1} 5^{1} 7^{1} 11^{0} \ldots \\
\operatorname{GCD}(98,420) & = & & 2^{1} 3^{0} 5^{0} 7^{1} 11^{0} \ldots=14
\end{aligned}
$$

GCD: Euclidean Algorithm

$\operatorname{GCD}(28,98)$

$\operatorname{GCD}(98,420)$

GCD: Euclidean Algorithm

$\operatorname{GCD}(28,98)$

$\operatorname{GCD}(98,420)$

Theorem (Euclid)

If $a=q b+r$, then $\operatorname{GCD}(a, b)=\operatorname{GCD}(b, r)$

GCD: Euclidean Algorithm

Theorem (Euclid)

If $a=q b+r$, then $\operatorname{GCD}(a, b)=\operatorname{GCD}(b, r)$
$\operatorname{GCD}(98,420)$

$$
a=420, b=98
$$

$$
\triangleright 420=98 \cdot 3+28
$$

$$
\operatorname{GCD}(420,98)=\operatorname{GCD}(98,28)
$$

$$
\triangleright 98=28 \cdot 2+14
$$

$$
\operatorname{GCD}(98,28)=\operatorname{GCD}(28,14)
$$

$$
\triangleright 28=14 \cdot 2+0
$$

$$
\operatorname{GCD}(28,14)=\operatorname{GCD}(14,0)=14
$$

$$
\operatorname{GCD}(420,98)=14
$$

GCD: Euclidean Algorithm

Theorem (Euclid)

If $a=q b+r$, then $\operatorname{GCD}(a, b)=\operatorname{GCD}(b, r)$
$\operatorname{GCD}(98,420)$

Algorithm GCD Computation

function $\operatorname{GCD}(a, b)$
if $b=0$ then
return a
else

$$
\begin{aligned}
& r \leftarrow a \% b \\
& \text { return } \operatorname{GCD}(b, r)
\end{aligned}
$$

GCD: Euclidean Algorithm

Theorem (Euclid)

If $a=q b+r$, then $\operatorname{GCD}(a, b)=\operatorname{GCD}(b, r)$

Proof: Case 1: $r=0 \quad \Longrightarrow \quad \operatorname{GCD}(b, r)=\operatorname{GCD}(b, 0)=b$, as $b \mid 0$ $r=0 \Longrightarrow a=q b$, so $\operatorname{GCD}(a, b)=b=\operatorname{GCD}(b, r)$

Case 2: $r>0$
Let d be a common divisor of b and $r \quad b=x d$ and $r=y d$ $a=q b+r=(q x) d+y d=(q x+y) d \Longrightarrow d \mid a$

Let d be a common divisor of a and $b \quad a=s d$ and $b=t d$ $r=a-q b=s d-(q t) d=(s+q t) d \Longrightarrow d \mid r$

So d is a common divisor of $a, b \leftrightarrow d$ is a common divisor of b, r

GCD: Extended Euclidean Algorithm

Theorem

For all $a, b, \quad \exists s, t: s a+t b=\operatorname{GCD}(a, b)$

$$
\begin{aligned}
a=420, b= & 98 \\
& \triangleright 420=98 \cdot 3+28 \\
\operatorname{GCD}(420,98)= & \operatorname{GCD}(98,28) \\
& \triangleright 98=28 \cdot 2+14 \\
\operatorname{GCD}(98,28)= & \operatorname{GCD}(28,14) \\
& \triangleright 28=14 \cdot 2+0 \\
\operatorname{GCD}(28,14)= & \operatorname{GCD}(14,0)=14 \\
\operatorname{GCD}(420,98)= & 14
\end{aligned}
$$

gCD: Extended Euclidean Algorithm

Theorem

For all $a, b, \exists s, t: s a+t b=\operatorname{GCD}(a, b)$

$$
\begin{aligned}
& a=899, b=493 \\
& \triangleright 899=1 \cdot 493+406 \\
& \operatorname{GCD}(899,493)=\operatorname{GCD}(493,406) \\
& \triangleright 493=1 \cdot 406+87 \\
& \operatorname{GCD}(493,406)=\operatorname{GCD}(406,87) \\
& \triangleright 406=4 \cdot 87+58 \\
& \operatorname{GCD}(406,87)=\operatorname{GCD}(87,58) \\
& \triangleright 87=1 \cdot 58+29 \\
& \operatorname{GCD}(899,493)=29 \\
& 29=87-1 \cdot 58 \\
& \triangleright 58=406-4 \cdot 87 \\
& 29=87-1(406-4 \cdot 87) \\
& \triangleright 87=493-1 \cdot 406 \\
& 29=5(493-406)-406 \\
& \triangleright 406=899-1 \cdot 493 \\
& 29=5 \cdot 493-6(899-493) \\
& \operatorname{GCD}(87,58)=\operatorname{GCD}(58,29) \\
& \triangleright 58=2 \cdot 29+0 \\
& \operatorname{GCD}(58,29)=\operatorname{GCD}(29,0)=29 \\
& \begin{array}{l}
29=-6 \cdot 899+11 \cdot 493 \\
s=-6, \quad t=11
\end{array}
\end{aligned}
$$

