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Prime Numbers

Definition

A positive integer p is prime if it has exactly two divisors, namely 1 and p

1 is not prime

Definition

A positive integer n is composite if it has a divisor d , 1 < d < n

1 is not composite
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Greatest common divisor

gcd(a, b) := the greatest common divisor

▷ the largest integer d that divides both a and b

gcd(24, 32) = 8

gcd(22, 24) = 2

gcd(15, 5) = 5

gcd(25, 15) = 5

gcd(13, 20) = 1

gcd(11, 33) = 11

Lemma: p is prime =⇒ ∀ a ∈ Z gcd(p, a) = 1 or p

▷ ∵ p has only two divisors 1 and p
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Greatest common divisor

gcd(a, b) := the greatest common divisor

▷ the largest integer d that divides both a and b

a and b are relatively prime if gcd(a, b) = 1

Equivalently, a and b have no common factors

gcd(25, 16) = 1, gcd(24, 25) = 1

A prime number p is relatively prime to all integers except its multiples
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Greatest common divisor

gcd(a, b) := the greatest common divisor

▷ the largest integer d that divides both a and b

We can find gcd(a, b) by

finding all divisors of a and b, then

find the common divisors, and then

find the greatest among the commons
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Greatest common divisor

gcd(a, b) := the greatest common divisor

▷ the largest integer d that divides both a and b

We can find gcd(a, b) from the prime factorization of a and b

a = pa11 pa22 . . . pann b = pb11 pb22 . . . pbnn

gcd(a, b) = p
min{a1,b1}
1 p

min{a2,b2}
2 . . . p

min{an,bn}
n

98 = 2 · 7 · 7 = 21 30 50 72 110 . . .

420 = 2 · 2 · 3 · 5 · 7 = 22 31 51 71 110 . . .

gcd(98, 420) = = 21 30 50 71 110 . . . = 14
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gcd: Euclidean Algorithm
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Theorem (Euclid)

If a = qb + r , then gcd(a, b) = gcd(b, r)
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gcd: Euclidean Algorithm

Theorem (Euclid)

If a = qb + r , then gcd(a, b) = gcd(b, r)
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a = 420, b = 98

▷ 420 = 98 · 3 + 28

gcd(420, 98) = gcd(98, 28)

▷ 98 = 28 · 2 + 14

gcd(98, 28) = gcd(28, 14)

▷ 28 = 14 · 2 + 0

gcd(28, 14) = gcd(14, 0) = 14

gcd(420, 98) = 14
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gcd: Euclidean Algorithm

Theorem (Euclid)

If a = qb + r , then gcd(a, b) = gcd(b, r)
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Algorithm gcd Computation

function gcd(a, b)

if b = 0 then

return a

else
r ← a % b

return gcd(b, r)
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gcd: Euclidean Algorithm

Theorem (Euclid)

If a = qb + r , then gcd(a, b) = gcd(b, r)

Proof: Case 1: r = 0 =⇒ gcd(b, r) = gcd(b, 0) = b, as b
∣∣ 0

r = 0 =⇒ a = qb, so gcd(a, b) = b = gcd(b, r)

Case 2: r > 0

Let d be a common divisor of b and r b = xd and r = yd

a = qb + r = (qx)d + yd = (qx + y)d =⇒ d
∣∣ a

Let d be a common divisor of a and b a = sd and b = td

r = a− qb = sd − (qt)d = (s + qt)d =⇒ d
∣∣ r

So d is a common divisor of a, b ↔ d is a common divisor of b, r
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gcd: Extended Euclidean Algorithm

Theorem

For all a, b, ∃ s, t : sa+ tb = gcd(a, b)

a = 420, b = 98

▷ 420 = 98 · 3 + 28

gcd(420, 98) = gcd(98, 28)

▷ 98 = 28 · 2 + 14

gcd(98, 28) = gcd(28, 14)

▷ 28 = 14 · 2 + 0

gcd(28, 14) = gcd(14, 0) = 14

gcd(420, 98) = 14

gcd(420, 98) = 14

▷ 14 = 98− 3 · 28

gcd(420, 98) = 98− 3 · 28

▷ 28 = 420− 98 · 4

gcd(420, 98) = 98−3(420−4 ·98)

gcd(420, 98) = −3·420+13·98

s = −3, t = 13
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gcd: Extended Euclidean Algorithm

Theorem

For all a, b, ∃ s, t : sa+ tb = gcd(a, b)

a = 899, b = 493

▷ 899 = 1 · 493 + 406

gcd(899, 493) = gcd(493, 406)

▷ 493 = 1 · 406 + 87

gcd(493, 406) = gcd(406, 87)

▷ 406 = 4 · 87 + 58

gcd(406, 87) = gcd(87, 58)

▷ 87 = 1 · 58 + 29

gcd(87, 58) = gcd(58, 29)

▷ 58 = 2 · 29 + 0

gcd(58, 29) = gcd(29, 0) = 29

gcd(899, 493) = 29

29 = 87− 1 · 58
▷ 58 = 406− 4 · 87

29 = 87− 1(406− 4 · 87)
▷ 87 = 493− 1 · 406

29 = 5(493− 406)− 406

▷ 406 = 899− 1 · 493
29 = 5 · 493− 6(899− 493)

29 = −6 · 899 + 11 · 493

s = −6, t = 11
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